Carbon-Carbon Bond Forming Reactions of η^3 -Allyl Iron Tricarbonyl Anions with Carbon Electrophiles

Seok Chang, Jaeyon Yoon, and Maurice Brookhart*

Contribution from the Department of Chemistry. University of North Carolina. Chapel Hill, North Carolina 27599-3290

Received August 30, 1993®

Abstract: Reaction of the η^3 -allyl iron tricarbonyl anion, 1, with alkyl halides (RX, R = -CH₃, -CH₂Ph, -(CH₂)₃CH₃, $-CH(CH_3)_2$, $-CH_2CH=CH_2$) followed by treatment with PPh₃ gives η^4 -(CH₃CH=CHC(O)R)Fe(CO)₂PPh₃ complexes, 2a-e, respectively, in good yields. P(OPh)3 and P(OCH3)3 also serves as effective trapping ligands. Low-temperature ¹H NMR studies show that CH₃I and PhCH₂Br react with 1 to give η^3 -(CH₂--CH--CH₂)Fe(CO)₄-R (7, R = -CH₃; 8, R = -CH₂Ph). These complexes react with PPh₃ in less than 5 min at -78 °C to give acyl complexes η^3 - $(CH_2 - CH_2)Fe(CO)_2PPh_3C(O)R$ (R = -CH₃, -CH₂Ph) which undergo acyl migration at 21 °C (ΔG^* ca. 21 kcal/mol) to give the observed η^4 -enone-Fe(CO)₂PPh₃ products 2a and 2b, respectively. Free enones were obtained from 2b and 2c by reaction with CH₃CN. Reaction of either syn- or anti-1-methallyl-Fe(CO)₃- with CH₃I followed by trapping with PPh₃ yields the same set of products in identical ratios: η^{4} -(E)-(CH₃CH=C(CH₃)C(O)CH₃)Fe(CO)₂-PPh₃, 13a, η^{4} -(Z)-(CH₃CH=C(CH₃)C(O)CH₃)Fe(CO)₂PPh₃, 13b, and η^{4} -(CH₂=C(CH₂CH₃)C(O)CH₃)Fe(CO)₂-C(CH₂CH₃)C(O)CH₃)Fe(CO)C(CH₃)Fe(CC)C(CH₃)Fe(CO)C(CH₃)Fe(PPh₃, 13c. Similiar results were obtained using PhCH₂Br. Product structures indicate highly regioselective acyl migration to C_1 when PPh₃ is used as the trapping ligand. Moderate regioselective migration to C_3 is observed when CH₃CN or CO is used as the trapping ligand in these systems. When CH₃CN is used as the trapping ligand, the major product isolated are the free β_{γ} -enones formed from interception of the β_{γ} -enone complexes prior to 1.3-hydrogen shift and formation of the conjugated α,β -enone iron complexes. A low-temperature in situ ¹H NMR study of this reaction using anti-methallyl-Fe(CO)₃- allows the NMR observation and determination of the rates of conversion for the complete set of sequentially formed intermediates: η^3 -anti-(CH₃CH \rightarrow CH \rightarrow CH₂)Fe(CO)₃-CH₃, anti-17, \rightarrow η^3 -anti-(CH₃CH⁻⁻CH₂)Fe(CO)₂(PPh₃)(C(O)CH₃), anti-18, $\rightarrow \eta^3$ -syn-(CH₃CH⁻⁻CH₂)Fe(CO)₂(PPh₃) $(C(O)CH_3)$, syn-18, $\rightarrow \eta^4$ - $(CH_2=CHCH(CH_3)C(O)CH_3)Fe(CO)_2PPh_3$, 19, $\rightarrow 13a-c$. The anti-to-syn conversion of anti-18 to syn-18 is exceedingly rapid relative to model systems. This rate acceleration is ascribed to formation of an η^2 -acyl intermediate. Reaction of syn-1-phenallyl-Fe(CO)₃⁻ with CH₃I and PhCH₂Br followed by trapping with PPh₃ yields η^{4} -(E)-(PhCH₂CH=CH(CH₃)C=O)Fe(CO)₂PPh₃ and η^{4} -(E)-(PhCH₂CH=CH-(CH₂Ph)C=O)Fe- $(CO)_2PPh_3$, respectively, as the major products. High regioselective acyl migration to C₃ is observed in each case which is ascribed to the conjugative stabilization of the phenyl group. Reactions of 1-propallyl-Fe(CO)₃-, 2-methallyl-Fe- $(CO)_3^-$, and syn-1-phenyl-anti-3-methallyl-Fe $(CO)_3^-$ with CH₃I and PhCH₂Br followed by trapping with PPh₃ and CH₃CN are also reported.

Introduction

Low-valent anionic transition-metal carbonyl complexes often display high nucleophilicity and react readily with simple organic electrophilies. When the anionic metal carbonyl complex also contains an unsaturated hydrocarbon ligand in the coordination sphere, reactions with carbon electrophiles can result in carboncarbon bond forming reactions involving the unsaturated π -system.¹ In cases where the unsaturated moiety contains one or more uncomplexed π -bonds, *exo* addition is normally observed suggesting that the electrophile attacks the free double bond which results in direct formation of an 18-electron complex. For example, methylation of η^4 -(C₈H₈)Mn(CO)₃⁻ gives the η^5 -(*exo*-8-methylcyclooctatrienyl)Mn(CO)₃ complex² as shown below:

[•] Abstract published in Advance ACS Abstracts. February 1, 1994. (1) For a review of such reactions, see: Brookhart, M.; Volpe, A. F., Jr.; Yoon, J. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Ed.; Pergamon Press: 1991; Vol 4, Section 3.5.

0002-7863/94/1516-1869\$04.50/0

Other well-documented cases include alkylation of η^4 -(C₆H₆)-Cr(CO)₃²⁻ studied by Cooper³ and methylation of η^4 -(1,3,5-cycloheptatriene)Mn(CO)₃^{-.2}

For systems which contain no uncomplexed double bonds such as (diene) $Mn(CO)_3$ - complexes,⁴ (cyclohexadienyl) $Cr(CO)_3^{-,5,6}$ (cycloheptadienyl) $Fe(CO)_2^{-,7}$ and (arene) $Mn(CO)_2^{-}$ complexes⁸ the electrophile adds *endo* which suggests initial attack at the metal center. An example of a simple *endo* carbon-carbon bond formation is the reaction of (cyclohexadiene) $Mn(CO)_3^{-}$ with CH₃I to yield the agostic *endo*-methylcyclohexenyl-Mn(CO)₃ complex:⁴

The reaction presumably occurs through the manganese-methyl complex. Following methyl migration, the initially formed 16-electron allyl complex is stabilized through an agostic interaction with the *endo* C-H bond.

© 1994 American Chemical Society

^{(2) (}a) Brookhart, M.; Noh, S. K.; Timmers, F. J. Organometallics 1987, 6, 1829. (b) Brookhart, M.; Noh, S. K.; Timmers, F. J.; Hong, Y. H. Organometallics 1988, 7, 2458.

Acyl products are frequently isolated in these reactions indicating alkylation at metal followed by CO insertion prior to migration.^{5,6} An early and synthetically useful example of this reactivity pattern reported by Kundig^{5b,6} involves alkylation of 6-exo-substituted cyclohexadienyl-Cr(CO)₃- anions. Reactions of these anionic chromium complexes with alkyl halides, followed by addition of CO yields the trans-5,6-disubstituted cyclohexadiene with complete regio- and stereospecificity:

In a preliminary study,⁹ we investigated the reaction of η^3 -(allyl)Fe(CO)₃- anion with carbon electrophiles followed by trapping with PPh₃. The following reaction sequence was elucidated:

This manuscript reports an extensive investigation of the reactions of allyl iron tricarbonyl anions with carbon electrophiles. Of particular focus is (1) the regiochemistry of acyl migration and the factors which control the regioselectivity, (2) the effect of syn versus anti substitution on the product distributions and

Table 1. Yields of the Reactions of 1 with Carbon Electrophiles

entry	RX	L	product	yield (%)
a	CH ₁ I	PPh ₃	2a	74,4 795
b	PhCH ₂ Br	PPh ₃	2b	87,ª 93b
с	PhCH ₂ Br	P(OPh) ₃	3b	84 ^a
d	PhCH ₂ Br	P(OMe)3	4 b	88ª
е	CH ₃ (CH ₂) ₃ I	PPh ₃	2c	78ª
f	(CH ₃) ₂ CHBr	PPh ₃	2d	73ª
g	CH2=CH-CH2Br	PPh ₃	2e	61 <i>ª.c</i>

"Yields are based on the starting C₃H₅Fe(CO)₃I used to generate the sodium salt in situ. ^b Yields based on reaction with pure isolated $C_3H_5Fe(CO)_3$ -PPN⁺. ^c $(\eta^3$ - $C_3H_5)_2Fe(CO)_2$ is also obtained as reported previously.11

regioselectivity, and (3) elucidation of the detailed mechanism of the reaction through low-temperature in situ ¹H NMR studies.

Results and Discussion

A. Reactions of the η^3 -Allyl Iron Tricarbonyl Anion, 1, with Alkyl Halides. 1. Alkylation of 1 Followed by Trapping with PPh₃: Formation of $\alpha_{1}\beta$ -Unsaturated Enone-Fe(CO)₂PPh₃ Complexes. The η^3 -allyl iron tricarbonyl anion is conveniently prepared in situ by sodium amalgam reduction of either allyl iron tricarbonyl bromide or iodide.^{8,10} The PPN+ salt of the anion can be isolated via counterion exchange as a highly air-sensitive solid. Alkylation reactions were carried out by adding 1 equiv of the alkyl halide to the anion 1 in THF at 0 °C followed by addition of triphenylphosphine (2 equiv) to the solution and warming to 25 °C. The net result of these reactions is summarized below and yields of the product enone complexes are tabulated in Table 1.

Stereochemistry about the α,β bond in the product enone complexes is exclusively E. Good yields (70-90%) were obtained for primary and secondary alkyl halides with the exception of allyl bromide where formation of $(\eta^3$ -allyl)₂Fe(CO)₂¹¹ is competitive with formation of the enone complex. While most trapping reactions were carried out using $L = PPh_3$, entries c and d in Table 1 show that $P(OPh)_3$ and $P(OMe)_3$ are equally effective trapping ligands. Yields are slightly higher for reactions carried out with the isolated PPN+ salt of 1, but the in situ generation procedure is far more convenient.

2. Mechanistic Investigations: ¹H NMR Spectroscopic Detection of Intermediates in the Reaction. The mechanism of the reactions of 1 with $RX = CH_3I$ and $C_6H_5CH_2Br$ (see entries a and b, Table 1) were investigated by low-temperature ¹H NMR spectroscopy. The initial alkylation products $(\eta^3-allyl)(CO)_3$ -FeR $(R = -CH_3, CH_2Ph)$ (eq 1) could be isolated by lowtemperature techniques. The methyl complex 5 exists as a 15:1 mixture of exo and endo isomers⁹ at -58 °C exhibiting methyl singlets at δ –0.51 (major isomer) and δ –0.42 (minor isomer). Typical allyl patterns confirm the structural assignments. Benzyl complex 6 exists as a 5:1 mixture of isomers (-13 °C) and exhibits

(10) Gubin, S. P.; Denisovich, L. A. J. Organomet. Chem. 1968, 15, 471.

 ⁽³⁾ Leong, V. S.; Cooper, N. J. J. Am. Chem. Soc. 1988, 110, 2644.
 (4) (a) Brookhart, M.; Lamanna, W. J. Am. Chem. Soc. 1981, 103, 989. (4) (a) Brookhart, M.; Lamanna, W. J. Am. Chem. Soc. 1981, 103, 989.
(b) Brookhart, M.; Lamanna, W.; Humphrey, M. B. J. Am. Chem. Soc. 1982, 104, 2117.
(c) Brookhart, M.; Lamanna, W.; Pinhas, A. R. Organometallics 1983, 2, 683.
(d) Brookhart, M.; Limmers, F. J. Organometallics 1985, 4, 1365.
(5) (a) Semmelhack, M. F.; Clark, G. R.; Garcla, J. L.; Harrison, J. J.; Thebtaranonth, Y.; Wulff, W.; Yamashita, A. Tetrahedron 1981, 37, 3957.
(b) Kundig, E. P. Pure Appl. Chem. 1985, 57, 1855.
(6) Kundig, E. P.; Cunningham. A. F., Jr: Paelia P.; Simmons, D. P.

⁽⁶⁾ Kundig, E. P.; Cunningham, A. F., Jr.; Paglia, P.; Simmons, D. P. Helo. Chim. Acta 1990, 73, 386.
(7) (a) Williams, G. M.; Rudisill, D. E. J. Am. Chem. Soc. 1985, 107, 3357.
(b) Williams, G. M.; Rudisill, D. E.; Barnum, B. A.; Hardcastle, K.;

Heyn, R. H.; Kozak, C. Z.; McMillan, J. W. J. Am. Chem. Soc. 1990, 112, 205.

⁽⁸⁾ Brookhart, M.; Rush, P. K.; Noh, S. K. Organometallics 1986, 5, 1745. (9) Brookhart, M.; Yoon, J.; Noh, S. K. J. Am. Chem. Soc. 1989, 111, 4117.

Scheme 1

۵

R = -CH3; k =
$$1.5 \times 10^{-3} \text{ sec}^{-1}$$
, 21 °C, $\Delta G^{\neq} = 21.0 \text{ kcal/mol}$
R = -CH2Ph; k = $9.2 \times 10^{-4} \text{ sec}^{-1}$, 21 °C, $\Delta G^{\neq} = 21.3 \text{ kcal/mol}$

two sets of allyl signals and overlapping resonances for the benzyl hydrogens at δ 1.80.

 $\begin{array}{c} & & & \\ & & & \\ (CO)_3Fe \end{array} \end{array} \xrightarrow[(CO)_3Fe]{} -R \end{array}$ $\begin{array}{c} & & \\ & &$

Treatment of either 5 or 6 with PPh₃ at -70 °C in CD₂Cl₂ results in immediate disappearance of these species $(t_{1/2} < ca. 5 min as monitored by ¹H NMR spectroscopy) and formation of acyl complexes 7 and 8, respectively (see Scheme 1). The most characteristic feature of these complexes are the acyl resonances at <math>\delta 2.92$ for the Fe–C(O)CH₃ moiety and $\delta 4.81$ for Fe–C(O)CH₂-Ph (full ¹H NMR data appear in the Experimental Section). Both 7 and 8 are sufficiently stable that IR spectra could be recorded at 25 °C and showed acyl bands at 1639 cm⁻¹ for 7 and 1630 cm⁻¹ for 8 in addition to ν_{CO} bands at 1991 and 1932 for 7 and 1990 and 1930 for 8.

Solutions of 7 and 8 at 21 °C form enone complexes 2a and 2b, respectively. These transformations follow first-order kinetics with $k_{7\rightarrow2a} = 1.5 \times 10^{-3} \text{ s}^{-1}$, $\Delta G^* = 21.0 \text{ kcal/mol}$ and $k_{8\rightarrow2b} = 9.2 \times 10^{-4} \text{ s}^{-1}$, $\Delta G^* = 21.3 \text{ kcal/mol}$. No intermediates are observed in the transformation, and thus we assume that the acyl migration step is rate-determining. A β , γ -enone-Fe(CO)₃ complex may form following acyl migration (see Scheme 1); it is undetected in these systems, but it has been observed in a similar transfer involving a methallyl complex (see below). Following acyl migration, a 1,3-hydrogen migration is required to form the α , β -enone complexes 2a,b. Based on numerous analogous 1,3-metal-mediated hydrogen transfers,¹² this migration likely occurs via a π -allyl iron hydride intermediate.

3. Isolation of Metal-Free Enones. It has been well-established that enone- $Fe(CO)_3$ complexes are good sources of the $Fe(CO)_3$

Scheme 2

Reaction Conditions	Ratio of α,β / β.γ-isomer	Yield
 PhCH₂Br, 0 °C, THF CH₃CN addn., 25°C, 12hrs. 	7:2	78 %
 PhCH₂Br, 0 °C. THF CH₃CN addn., irradiation, 0 °C 	1:9	80 %

moiety and that the enone ligand is readily displaced.¹³ Thus, the free α,β -unsaturated ketones can be readily recovered from complexes **2a-g** by simple ligand displacement reactions. Illustrative reactions were carried out with enone complexes **2b,c**. Refluxing either **2b** or **2c** in CH₃CN (2-6 h) gave enones **10** and **11** in good yields (70-77%) (eq 2). Alternatively, irradiation of CH₃CN solutions of **2b** or **2c** at 0 °C led to slightly better yields of the free enones (80-85%).

If the β,γ -unsaturated enone complexes 9 (see Scheme 1) could be intercepted prior to 1,3-hydrogen migration, then a reaction sequence would be available for the preparation of the unconjugated β,γ -enones as well as the conjugated isomers. Several reaction sequences were investigated using 1, benzyl bromide as the alkylating reagent and excess acetonitrile as the trapping ligand. Typical results are summarized below in Scheme 2. Benzylation followed by addition of a very large excess of CH₃-CN and warming to 25 °C for 12 h results in recovery of the conjugated enone (E)-CH₃CH=CHCOCH₂C₆H₅ and some unconjugated enone CH2=CHCH2COCH2C6H5 (7:2 ratio, 78%) yield). A more effective method for maximizing the yield of the β,γ -isomer involved benzylation in THF, addition of CH₃CN and irradiation, with all procedures carried out at 0 °C. This process results in formation of a 9:1 ratio of β, γ - to α, β -isomers in a total isolated yield of 80%.

B. Reactions of η^3 -Methallyl Iron Tricarbonyl Anions with Alkyl Halides. 1. Alkylation Reactions. Reactions of syn- and anti-methallyl iron tricarbonyl anions, syn-12 and anti-12, with alkyl halides followed by trapping with PPh₃ to form α,β unsaturated enone-Fe(CO)₂PPh₃ complexes were carried out to determine how an alkyl substituent controls the regiochemistry of acyl migration and to assess how syn versus anti substitution affects this regiochemistry and the distribution of products. In these studies the syn-12 anion was generated from sodium amalgam reduction of syn-methallyl iron tricarbonyl iodide or bromide. An alternate method developed subsequent to this work involves generation by reductive cleavage of (syn-methallyl)Fe-(CO)₃SnMe₃ using KH.¹⁴ The anti-12 anion can be generated in situ from Et₃BH⁻ reduction of (butadiene)Fe(CO)₃. Alternatively, reductive cleavage of (anti-methallyl)Fe(CO)₃SnMe₃

⁽¹¹⁾ Nesmeyanov, A. N.; Kritskaya, I. I.; Ustynyuk, Y. A.; Fedin, E. I. Dokl Akad. Nauk. SSSR 1968, 176, 341.

^{(12) (}a) Manuel, T. A. J. Org. Chem. 1962, 27, 3941. (b) Alper, H.; Leport, P. C.; Wolfe, S. J. Am. Chem. Soc. 1969, 91, 7553. (c) Cowherd, F. G.; von Rosenberg, J. L. J. Am. Chem. Soc. 1969, 91, 2157.

^{(13) (}a) Howell, J. A. S.; Kola, J. C.; Dixon, D. T.; Burkinshaw, P. M.; Thomas, M. J. J. Organomet. Chem. 1984, 266, 83. (b) Graham, C. R.; Scholes, G.; Brookhart, M. J. Am. Chem. Soc. 1977, 99, 1180.

⁽¹⁴⁾ Chang, S.; White, P. S.; Brookhart, M. Organometallics 1993, 12, 3636.

using CH₃Li or KH provides high yields of *anti*-12.¹⁴ Using any of these methods gives similar results; however, KH cleavage of the tin complexes results in generation of pure, isolable potassium salts of both *syn*-12 and *anti*-12 and thus this is our currently preferred procedure.

Products of the reactions of syn-12 and anti-12 with CH₃I and C₆H₃CH₂Br in THF at 0 °C followed by PPh₃ addition are shown in Scheme 3. The reaction sequence employing CH₃I and either syn- or anti-12 gives the identical ratio of enone complexes 13a: 13b:13c in similar overall yields. The assignment of E stereochemistry to 13a is based on the typical higher field shift of the "inside" hydrogen on the β -carbon of the enone (δ 1.57) relative to the "outside" hydrogen on the β -carbon of 13b (δ 2.61).¹⁵ The products 13a,b arise from a single 1,3-hydrogen migration while isomer 13c arises from a second sequential 1,3 H-migration as shown in Scheme 4.

All products (13a, 13b, and 13c) result from migration of the acyl unit to the methyl-substituted carbon, C_1 . Thus, although

three products were formed, the regioselectivity of the migration with PPh_3 as the trapping ligand is quite high.

Results of the benzylation reactions are similar to those of methylation. The major products obtained from either syn- or anti-12 are the E and Z isomers 14a and 14b which exhibit ¹H chemical shifts for H_{β} at δ 1.54 for E isomer, 14a, and δ 2.58 for Z isomer, 14b. (In the case of the benzylation of syn-12, trace amounts of the isomerized product [CH₂—CH(CH₂CH₃)COCH₂-Ph]Fe(CO)₂PPh₃, 14c, were also detected). Product ratios from either syn- or anti-12 are within experimental error. Again, products arise exclusively from migration of the acyl group, -COCH₂Ph, to the methyl-substituted carbon, C₁. To illustrate recovery of free ligands in these systems, isomer 14a was irradiated in CH₃CN solution which resulted in isolation of enone, 15a, in 78% yield (eq 3).

The regiochemistry of the acyl migration can be substantially altered by variation of the trapping ligand. Illustrated below are the results of benzylation of *syn*- and *anti*-12 followed by trapping with CH₃CN. In these cases excess CH₃CN results in displacement of the enone ligands which are recovered in good overall yields (Scheme 5). The major products produced are the β , γ enones, 16a and 16b, which are obtained via displacement prior to 1,3-hydrogen shift. The product ratios are the same whether *syn*- or *anti*-12 is employed.

Enone 16a results from migration of the acyl moiety to C_3 , the unsubstituted terminal carbon, while enones 16b and 16c result from migration to C_1 , the methyl-substituted carbon. Thus, in this case, although regioselectivity is low, migration to C_3 is favored by ca. 2:1 in contrast to the PPh₃ case where migration occurs exclusively to C_1 .

What differences between CH₃CN and PPh₃ result in the opposite regioselectivity of acyl migration? Even though CH₃-CN and PPh₃ are electronically quite different (PPh₃ is a much better π -acid than CH₃CN), we believe that the most likely explanation lies in the extreme contrast in the relative sizes of these ligands. We propose that the very bulky PPh₃ ligand directs migration of the acyl group to C₁ to produce initially a monosubstituted alkene complex as noted below. Migration to C₃ to form a much more sterically crowded disubstituted alkene complex is disfavored.

In contrast, for the much smaller CH_3CN ligand there is no discrimination based on the formation of mono- versus disubstituted alkene complexes. In this case it would appear that the slight selectivity for migration to C_3 may be controlled by the

⁽¹⁵⁾ Howell, J. A. S.; Dixon, D. T.; Kola, J. C. J. Organomet. Chem. 1984, 266, 69.

(sterically crowded)

steric preference for σ -bond formation between the acyl unit and an unsubstituted allyl carbon atom.

To further probe the role of ligands in determining the regioselectivity of migration, CO was employed as a trapping ligand. In this case CO possesses π -acid character similar to PPh₃ but steric bulk equivalent to CH₃CN. Benzylation of syn-12 followed by exposure to CO for 3 h at 0 °C resulted in isolation of the free enones, 16a-c, shown below.

$${}^{2} \bigvee_{\substack{i \\ j \\ i \\ Fe(CO)_{3}}}^{1} \frac{1) \operatorname{PhCH}_{2}\operatorname{Br}, 0 \, {}^{\circ}\operatorname{C}}{2) \operatorname{CO}, 3 \operatorname{hrs.}, 0 \, {}^{\circ}\operatorname{C}} \frac{16a}{87 \, \%} \frac{16b}{9 \, \%} \frac{16c}{4 \, \%}$$

In this case the major product observed, **16a**, is a result of migration to C_3 which supports the idea that steric effects play the major role in determining regioselectivity.

2. In Situ¹H NMR Spectroscopic Investigation of the Reaction of anti-Methallyl Iron Tricarbonyl Anion, anti-12, with CH₃I Followed by Trapping with PPh₃. The fact that syn- and antimethallyl iron tricarbonyl anions both yield the same ratio of products 13a-c upon methylation and subsequent treatment with PPh₃ led us to suspect that at some stage in the reaction prior to acyl migration the anti isomer isomerizes to the more stable syn isomer to reach a common intermediate. To probe this possibility, an in situ¹H NMR study was carried out using anti-12 in an effort to detect any anti-to-syn transformations which might occur during the course of the reaction.

Remarkably, four sequentially formed intermediates could be identified in the conversion anti-12 to products 13a-c. The spectroscopic observations are summarized in Scheme 6. Methylation of anti-12 using CH₃I at -60 °C in THF-d₈ gave cleanly (anti-methallyl)Fe(CO)₃CH₃, anti-17. The FeCH₃ signal appears at δ –0.47. A typical methallyl pattern is observed with the central proton, H₂, appearing as a doublet of triplets $(J_{H1-H2} = J_{Hsyn-H2})$ = 7.4 Hz, $J_{\text{Hanti-H2}}$ = 12.9 Hz). The $J_{\text{H1-H2}}$ value of 7.4 Hz, typical of a syn coupling, establishes that the methyl group has remained anti. Treatment of anti-17 with PPh3 at -80 °C results in immediate conversion to acyl complex, anti-18. The acetyl methyl of anti-18 appears at $\delta 2.76$. Again a pattern characteristic of an *anti*-methallyl group is evident: δ 4.08 (H₂), 3.64 (H₁), 3.09 (syn-H₃), 3.00 (anti-H₃), 1.00 (CH₃). The H₂ resonance exhibits a $J_{H1-H2} = 8.1$ Hz indicative of a syn coupling and proof that the methyl group has remained anti.

Warming the solution of anti-18 to -29 °C results in antito-syn isomerization and formation of (syn-methallyl)Fe-(CO)₂PPh₃-C(O)CH₃, syn-18. The transformation follows firstorder kinetics with $k = 3.0 \times 10^{-4} \text{ s}^{-1}$, $\Delta G^* = 18.1 \text{ kcal/mol}$. The acetyl methyl resonance appears at δ 2.87 together with a set of resonances characteristic of a syn-methallyl moiety: δ 4.31 (H₂), 2.85 (H₁), 2.24 (syn-H₃), 1.65 (anti-H₃), and 1.11 (CH₃). Again, the H₂ signal shows a J_{H1-H2} = 13 Hz typical of an anti coupling and proof that the methyl group is now syn.

When solutions of syn-18 are warmed at 25 °C, rapid conversion to products 13a-c occurs. However, holding the solution of syn-

Scheme 6

18 at 6 °C results in observation of an intermediate formed prior to final product formation. While several of the resonances of this species are obscured by syn-18 and products 13a,b being formed, clearly visible is a new acyl signal at δ 1.82 and a new methyl doublet at δ 1.43 (J = 8.0 Hz). A reasonable assignment for this fleeting intermediate is the β,γ -enone complex 19, as shown in Scheme 6. Warming this solution to 11 °C results in conversion to products 13a,b. (On the scale of this experiment, the minor product 13c could not be observed.) The first-order rate constants obtained for these conversions were $k_{syn-18\rightarrow 19} = 6$ $\times 10^{-4}$ s⁻¹, ΔG^{*} ca. 20 kcal/mol; $k_{19\rightarrow 13a,b} = 2 \times 10^{-4}$ s⁻¹, ΔG^{*} ca. 21 kcal/mol.

The observation that *anti*-18 isomerizes to *syn*-18 at a rate much faster than acyl migration demonstrates why the same product distributions are obtained from either *syn*- or *anti*-12 when PPh₃ is used as a trapping ligand. The observation that the same ratio of free enone products are produced upon benzylation of *anti*- or *syn*-12 and trapping with CH₃CN also suggests isomerization of the intermediate *anti*-acyl complex, *anti*methallyl Fe(CO)₂(CH₃CN)C(O)CH₃, to its *syn* isomer prior to acyl migration. In addition the fact that the major product, 16a, possesses E stereochemistry about the β , γ -double bond further supports *anti*-to-*syn* isomerization in the CH₃CN systems.

The rate of anti- to syn-18 isomerization is enormously accelerated relative to anti \rightarrow syn isomerization in rather similiar systems. For example, isomerization of syn-(CH₃CH_{\neg}CH \rightarrow CH $_{\neg}$ COC Although there are several other features which may result in this rate effect (e.g., PPh₃ versus CO substitution), we suggest that the acyl ligand is responsible for this large rate acceleration. The acyl ligand can function in an η^2 fashion and thus is capable of stabilizing the 16-electron σ -allyl intermediate responsible for anti-to-syn isomerization (Scheme 7). More specifically, as the η^3 -anti-methallyl ligand transforms to the σ -allyl complex, the acyl oxygen, in a concerted fashion, can stabilize the developing vacant coordination site as shown below in structure 20.

Scheme 7

resulting intermediate σ -complex can be formulated as the 18electron η^2 -acyl species, 21.

C. Reactions of Other Substituted Allyl Iron Tricarbonyl Anions with Alkyl Halide Followed by Trapping with PPh₃ and CH₃CN. Reactions of syn-1-propallyl-Fe(CO)₃⁻, 22, syn-1-phenallyl-Fe(CO)₃⁻, 23, 2-methallyl-Fe(CO)₃⁻, 24, and syn-1-phenyl-anti-3-methallyl-Fe(CO)₃⁻, 25, with methyl iodide and benzyl bromide have been examined. Anions 22, 23, and 24 were generated by sodium amalgam reduction of the corresponding allyl iron tricarbonyl halides; anion 25 was generated by hydride reduction (KBHEt₃) of (trans-1-phenylbutadiene)Fe(CO)₃.¹⁴

Scheme 8 summarizes results of the alkylation reactions carried out in THF at 0 °C followed by treatment of these solutions with PPh₃. In all cases except **25**, α , β -unsaturated enone-Fe(CO)₂-PPh₃ complexes were isolated in good yields. While not spectroscopically monitored, we assume the mechanism of formation of these products is similar to the mechanisms deduced for the analogous (allyl)Fe(CO)₃⁻ and (methallyl)Fe(CO)₃⁻ reactions.

In the case of the *anti*-1-propyl substituted anion, 22, enone-Fe(CO)₂L products are analogous to those obtained for the *syn*and *anti*-methallyl-Fe(CO)₃- anions. As with the methallyl systems, the acyl group migrates regioselectively to C₁, the propylsubstituted allyl carbon atom. The phenallyl system, 23, shows the opposite regiochemistry with products 28, 29 and 30, 31 arising from acyl migration to C₃ in the case of both $-C(O)CH_3$ and $-C(O)CH_2Ph$ groups. The likely reason for the change in regioselectivity is that, as shown below, migration to C₃ results in initial formation of an alkene complex 37 in which the phenyl group remains conjugated with the C₁-C₂ double bond as shown below. Had migration to C₁ occurred, conjugation of the phenyl group would have been sacrificed in 38. Apparently in this case, the conjugative interaction outweighs the differences in steric crowding.

In the case of the methallyl anion 24, the terminal allyl carbons are equivalent and only one α,β -enone-Fe(CO)₂L isomer can

result, 32 in the case of CH₃I and 33 in the case of C₆H₅CH₂Br. The benzylation reaction results in formation of a small amount of the free β , γ -enone, 34. The 1-phenyl-3-methallyl-Fe(CO)₃⁻ anion, 25, as expected based on the behavior of 12 and 23, exhibits acyl migration exclusively to C₃ upon benzylation and trapping with PPh₃. However, in this case, displacement of the β , γ -enone occurs prior to isomerization to give 35 as the major product. A minor amount of the isomerized α , β -enone, 36, is also observed. Again, to demonstrate that the free enones can be displaced in good yields for enone-Fe(CO)₂PPh₃ systems, complexes 27a, 28, 30, and 33 were irradiated with refluxing or stirred at 25 °C without irradiation in CH₃CN solutions. The α , β -unsaturated enones (39, 29, 31, and 40, respectively) were isolated in yields of 65-75%. Details appear in the Experimental Section.

Experiments were also carried out in which anions 22, 23, 24, and 25 were alkylated and then treated with acetonitrile as the trapping ligand. In each of these four cases the β , γ -enones were isolated in good yields as the only products. Results are

summarized in Scheme 9. Based on the mechanisms delineated earlier for PPh₃ reactions we assume that the acyl species $(allyl)Fe(CO)_2(CH_3CN)C(O)R$ is formed which then undergoes acyl migration to form the β,γ -enone complex. The β,γ -enone is then displaced from these complexes by excess CH₃CN before 1,3-hydrogen migration and formation of the α,β -enone complexes can occur.

The regiochemistry of acyl migration is clear from the structures of the β,γ -enones isolated. Acyl migration in the 1-propyl substituted system occurs exclusively (>15:1) to C₃ to yield 41 as the sole product. This selectivity is substantially higher than in the 1-methallyl system which shows at ca. 2:1 preference for migration to C_3 versus C_1 . Steric factors must be responsible for this increased selectivity. Of course the regioselectivity is the opposite of that observed when PPh₃ is used as a trapping ligand where products 26a,b and 27a,b result from exclusive migration to C_1 .

In the phenyl-substituted system, products 42 and 43 demonstrate that migration of CH₃CO and C₆H₅CH₂CO occurs exclusively to C_3 . This is the expected result based on the fact that high regioselectivity for migration to C_3 is observed in the PPh₃ case and the smaller CH₃CN ligand would only serve to enhance that regioselectivity. In the case of the syn-1-phenylanti-3-methallyl-Fe(CO)₃⁻ system, migration of $-C(O)CH_3$ occurs exclusively to C_3 , the methyl-substituted carbon. The free β,γ -enone, 35, is the sole product. This result further illustrates that the phenyl group strongly prefers to remain conjugated with the double bond of the β , γ -enone initially formed upon acyl migration.

Summary

The following major points have been established.

1. Alkylation ($\mathbf{RX} = \mathbf{CH}_{3}\mathbf{I}$, $\mathbf{PhCH}_{2}\mathbf{Br}$, $\mathbf{CH}_{3}(\mathbf{CH}_{2})_{3}\mathbf{I}$, $(\mathbf{CH}_{3})_{2}$ -CHBr, CH2=CHCH2Br) of (allyl)Fe(CO)3 followed by trapping with PPh₃ gives good yields of η^4 -((E)-CH₃CH=CHC-(O)R)Fe(CO)₂PPh₃. The free enones can be readily isolated by displacement with acetonitrile. Using CH₃CN in place of PPh₃ as the trapping ligand at 0 °C under photolysis results in good yields of the free β , γ -enones, the product of acyl migration prior to 1,3-hydrogen shift.

2. Methylation or benzylation of syn- or anti-methallyl-Fe- $(CO)_3^-$ was carried out using either PPh₃ or CH₃CN as the trapping ligand. Results demonstrated that the product ratios are independent of syn versus anti substitution but the regiochemistry of migration can be controlled by choice of trapping ligand. When PPh₃ is used, acyl migration occurs exclusively to C_1 , the methyl-substituted allyl carbon, and α,β -enone-Fe(CO)₂-PPh₃ complexes are ultimately formed. When CH₃CN is used as the trapping ligand, free β,γ -enones are formed. Regioselectivity is reversed and acyl migration occurs predominantly to C₃. When CO is used as the trapping ligand, selective migration to C_3 is also observed which suggests steric control of the regioselectivity of migration.

3. Methylation or benzylation of 1-phenallyl-Fe(CO)₃ followed by trapping with PPh₃ yields α,β -enone complexes, (PhCH₂-CH=CHC(O)R)Fe(CO)₂PPh₃. Regiochemistry of acyl migration is reversed relatively to the methallyl system and occurs exclusively to C_3 , presumably due to the conjugative effect of the phenyl group. Use of CH₃CN as the trapping ligand gives good yields of the free β,γ -enones with regioselective acyl migration to C₃. Methylation of the disubstituted system 1-phenyl-3methallyl-Fe(CO)₃⁻ and trapping with PPh₃ or CH₃CN gives products indicative of acyl migration exclusively to C₃. In both cases the major product is the free β , γ -enone.

4. In situ ¹H NMR studies have allowed detection of several intermediates in the reaction and thus elucidated several mechanistic details. Methylation or benzylation of allyl-Fe(CO)₃yields allyl-Fe(CO)₃-R complexes ($R = -CH_3$, $-CH_2C_6H_5$). Exposure to PPh₃ at -78 °C gives the acyl complexes allyl- $Fe(CO)_2PPh_3-C(O)R$ in less than 5 min. The acyl group migrates to C_1 of the allyl moiety at 20 °C. Free energies of activation for this migration are ca. 21 kcal/mol. In both cases the α,β enone complexes are formed; no β , γ -enone complexes, presumed intermediates, are detected during migration.

5. ¹H NMR investigation of methylation of the anti-1methylallyl-Fe(CO)₃⁻ anion revealed a similar behavior but two additional significant observations were made. First, the antimethyl-acyl complex, anti-1-methylallyl-Fe(CO)₂PPh₃C(O)CH₃ undergoes isomerization to the syn-methyl isomer prior to migration. The rate of this isomerization is ca. 10⁶ faster than model systems which we attribute to stabilization of the σ -allyl intermediate through η^2 -acyl formation. This observation explains why product ratios are independent of syn- vs anti-methyl substitution. Secondly, acyl migration in this system yields a transient intermediate assigned to the β , γ -enone complex. This observation completes the identification of every plausible intermediate in the conversion allyl-Fe(CO)₃ anions to α,β enone-Fe(CO)₂PPh₃ complexes through alkylation and trapping with PPh₃.

Experimental Section

General procedures were the same as those previously published.¹⁴ High-resolution mass spectroscopy was performed by Midwest Center for Mass Spectroscopy at University of Nebraska, Lincoln. Elemental analyses for (Z)-CH3CH=CHCOCH2Ph, 2a-e, 3b, 4b, 11, 13a-c, 14ac, 16b-c, 26a,b, 27a,b, 28, 29, 30, 31, 32, 33, 34, 39, 40, and 43 and high-resolution mass spectral data for 10, 16a, 41, 42, and CH2-CHCH2-COCH₂Ph are contained in the supplementary material. The following compounds were prepared as previously described:¹⁴ trans- η^{4} -[PhCH=CHCH=CH2]Fe(CO)₃, anti-[CH₃CH=CH₂]Fe(CO)₃ (SnMe₃), syn-[CH₃CH-CH-CH₂]Fe(CO)₃(SnMe₃), anti,syn-[CH₃-CH--CH--CHPh]Fe(CO)₃(SnMe₃), syn,syn-[CH₃CH--CHPh]- $Fe(CO)_3(SnMe_3)$

η³-[CH₂-CH-CH₂]Fe(CO)₃I. A modification of the procedure of Murdoch and Weiss was used.¹⁶ To a solution of allyl iodide (20 g, 0.12

⁽¹⁶⁾ Murdoch, H. D.; Weiss, E. Helv. Chim. Acta 1962, 225, 1927.

⁽¹⁷⁾ Nesmeyanov, A. N.; Nekrasov, Y. S.; Avakyan, N. P.; Kritskaya, I.
I. J. Organomet. Chem. 1971, 33, 375.
(18) Plowman, R. A.; Stone, F. G. A. Z. Naturforsch. 1962, 176, 575.

mol) in hexane (300 mL) was added Fe(CO)₅ (47 g, 0.24 mol). The mixture was warmed to 40 °C, and then stirring was continued for 5 h. Ethyl ether was added, and the solution was filtered through silica gel. The solvent was removed to give the crude product as a mixture of two isomers (1.4:1 at 25 °C, 67%, 24.8 g): IR ν_{C0} (THF, cm⁻¹) 2073, 2018, 2011; ¹H NMR (CDCl₃, δ), major isomer 4.62 (tt, J = 13.3, 7.9 Hz, 1H, CH₂···CH···, 4.21 (d, J = 7.9 Hz, 2H, syn-H of CH₂···CH···CH₂), 3.82 (d, J = 13.3 Hz, 2H, anti-H of (CH₂···CH···CH₂), minor isomer 5.71 (tt, J = 13.0, 7.9 Hz, 1H, CH₂···CH···), 3.71 (td, J = 7.9, 1.1 Hz, 2H, syn-H of CH₂···CH···CH₂), 2.38 (d, J = 13.0 Hz, 2H, anti-H or CH₂···C-H···CH₂).

Generation of $[(\eta^3-ally])$ tricarbonyliron] Na⁺.¹⁰ To stirring mercury (20 g, 0.1 mol) was added sodium (1.2 g, 0.05 mol) under a nitrogen atmosphere. After formation of the sodium amalgam, the mixture was cooled to 0 °C. A solution of η^3 -[CH₂···CH···CH₂]Fe(CO)₃I (1.0 g, 3.2 mol) in THF (30 mL) was added dropwise to the rapidly stirring sodium amalgam. During the addition, a temporary deep red color appeared and then turned to yellow (10–20 min). The yellow solution was filtered through Celite under nitrogen to give η^3 -[CH₂···CH···CH₂]Fe (CO)₃Na in THF solution.

 η^3 -[CH₂--CH--CH₂]Fe(CO)₃-PPN⁺. To freshly prepared η^3 -[CH₂--CH--CH₂]Fe(CO)₃Na (from η^3 -[CH₂--CH--CH₂]FeCO₃I (0.5 1.6 mmol)) in THF solution was added bis(triphenylphosphoranylidene)ammonium chloride (PPNCl, 0.92 g, 1.6 mmol) at 0 °C. After stirring for 10 min, the solution was filtered through Celite under nitrogen; solvent was evaporated to give crude η^3 -[CH₂--CH--CH₂]Fe(CO)₃PPN. Several recrystallizations using THF/hexane gave the pure product as a bright ivory solid which was unstable in the air but could be stored under nitrogen at -10 °C for several days: IR ν_{CO} (THF, cm⁻¹) 1933, 1830; ¹H NMR (THF-d₈, δ) 4.21 (tt, J = 8.9, 5.3 Hz, 1H, CH₂--CH--CH₂), 1.58 (d, J = 5.3 Hz, 2H, syn-H of CH₂--CH--CH₂), 0.92 (d, J = 8.9 Hz, 2H, anti-H of CH₂--CH--CH₂).

 $\eta^3 \cdot [CH_2 - CH - CH_2]Fe(CO)_3(CH_3), 5. To \eta^3 - [CH_2 - CH - CH_2]Fe$ (CO)₃Na (from η^3 -[CH₂-CH-CH₂]Fe(CO)₃I (0.5 g, 1.6 mmol)) in THF (30 mL) at 0 °C was added CH₃I (0.28 g, 1.92 mmol). After stirring for 20 min at 0 °C, sodium iodide was removed by filtering through Celite. Evaporation of solvent under reduced pressure gave the crude product which was purified by low-temperature column chromatography using silica gel and hexane/CH2Cl2. The product, which was thermally unstable and decomposed in the air, was obtained as a mixture of two isomers (yellow oil, 15:1 at -58 °C): IR ν_{CO} (THF, cm⁻¹) 2050, 1985; major isomer, ¹H NMR (CDCl₃, -58 °C, δ) 3.92 (tt, J = 12.2, 7.5 Hz, 1H, $CH_2 \rightarrow CH \rightarrow CH_2$), 3.04 (d, J = 7.5 Hz, 2H, syn-H of $CH_2 \rightarrow CH_2$ $CH - CH_2$, 2.18 (d, J = 12.2 Hz, 2H, anti-H of $CH_2 - CH - CH_2$), -0.51 (s, 3H, CH_3); ¹³C NMR (C₆D₆, δ {¹H}) 105.6 ($CH_2 - CH - CH_2$), 49.0 $(CH_2 \rightarrow CH \rightarrow CH_2)$, -2.7 (CH_3) ; minor isomer, ¹H NMR $(CDCl_3, -58)$ °C, δ) 4.20 (m, 1H, CH₂--CH--CH₂), 3.52 (d, J = 7.6 Hz, 2H, syn-H of CH_2 , CH_2 , 1.74 (d, J = 12.5 Hz, 2H, anti-H of CH_2 , CH_2 CH_2 , -0.42 (s, 3H, CH_3).

 $η^3$ -[CH₂-¬CH¬-CH₂]Fe(CO)₃(CH₂Ph), 6. Following the same procedure as above using PhCH₂Br (0.33 g, 1.92 mmol) yielded a mixture of two isomers (yellow oil, 5:1 at -13 °C): IR ν_{CO} (THF, cm⁻¹) 2057, 1994, 1711; ¹H NMR (CD₂Cl₂, -13 °C, δ) major isomer, 7.18–6.92 (m, 5H, Ph), 3.92 (tt, J = 12.4, 7.5 Hz, 1H, CH₂-¬CH¬-CH₂), 3.16 (d, J = 7.5 Hz, 2H, syn-H of CH₂-¬CH¬-CH₂), 2.36 (d, J = 12.4 Hz, 2H, anti-H of CH₂-¬CH¬-CH₂), 1.80 (s, 2H, CH₂Ph), minor isomer, 7.18–6.92 (m, 5H, Ph), 4.21 (tt, J = 11.7, 6.8 Hz, 1H, CH₂-¬CH¬-CH₂), 3.58 (d, J = 6.8 Hz, 2H, syn-H of CH₂-¬CH¬-CH₂), 1.90 (d, J = 11.7 Hz, 2H, anti-H of CH₂-¬CH¬-CH₂), 1.80 (s, 2H, CH₂Ph).

 η^3 -[CH₂-TCH-TCH₂]Fe(CO)₂PPh₃(COCH₃), 7. To a solution of η^3 -[CH₂-TCH-TCH₂]Fe(CO)₃CH₃ (0.01 g, 0.05 mmol) in CD₂Cl₂ (0.3 mL) in an NMR tube was added PPh₃ (0.027 g, 0.10 mmol) in CD₂Cl₂ (0.3 mL) at -78 °C. The NMR spectrum indicated the immediate disappearance of the Fe-CH₃ peak (-0.5 ppm) and formation of a new metal acyl peak (2.92 ppm). The product (single isomer) is stable under -10 °C but above that temperature acyl migration begins: IR ν_{CO} (CH₂Cl₂, cm⁻¹) 1991, 1932, 1639; ¹H NMR (CD₂Cl₂, -40 °C, δ) 7.56-7.24 (m, 15H, 3Ph), 4.20 (m, 1H, CH₂-TCH-TCH₂), 2.92 (s, 3H, COCH₃), 2.86 (d, J = 6.9 Hz, 2H, syn-H 1.92 (dd, J = 12.2, J_{H-P} = 3.7 Hz, 2H, anti-H of CH₂-TCH-TCH₂).

 η^{3} -[CH₂·¬CH·¬CH₂]Fe(CO)₂PPh₃(COCH₂Ph), 8. Following the same procedure as above using η^{3} -[CH₂·¬CH·¬CH₂]Fe(CO)₃-(CH₂Ph) gave a single isomer, 8: IR ν_{CO} (CH₂Cl₂, cm⁻¹) 1990, 1930, 1630; ¹H NMR (CD₂Cl₂, -45 °C, δ) 7.80–7.12 (m, 20H, 4Ph), 4.81 (s, 2H, CH₂Ph), 4.21 (m, 1H, CH₂·¬CH·¬CH₂), 2.98 (d, J = 7.5 Hz, 2H, syn-H of CH₂·¬CH·¬CH₂), 2.04 (dd, J = 12.3, $J_{H-P} = 3.5$ Hz, 2H, anti-H of CH₂·¬CH·¬CH₂).

Synthetic Method for Preparation of 2a–e, 3b, and 4b. To a stirred solution of freshly prepared η^3 -[CH₂--CH--CH₂]Fe(CO)₃Na (from η^3 -[CH₂--CH--CH₂]Fe(CO)₃I (0.5 g, 1.6 mmol)) in THF (30 mL) at 0 °C under nitrogen was added 1.9 mmol of RX. After stirring for 30 min at 0 °C, 3.2 mmol of the appropriate phosphine or phosphite was added. Stirring was continued at 25 °C for 2 h followed by the normal workup procedure to give the crude product. Products were purified by flash column chromatography using silica gel and CH₂Cl₂/hexane.

 η^{4} -(E)-[CH₃CH—CHCOCH₃]Fe(CO)₂PPh₃, 2a (RX = CH₃I): yellow solid; IR ν_{CO} (THF, cm⁻¹) 1990, 1930, 1835, 1475, 1435; ¹H NMR (C₆D₆, δ) 7.78–7.65 (m, 5H, Ph), 7.10–6.95 (m, 10H, 2Ph), 4.82 (dd, J = 8.2, $J_{H-P} = 2.3$ Hz, 1H, —CHCO), 2.10 (d, $J_{H-P} = 2.5$ Hz, 3H, COCH₃), 1.56 (m, 1H, CH₃CH—), 1.10 (dd, J = 6.4, 1.8 Hz, 3H, CH₃-CH—); ¹³C NMR (C₆D₆, δ {H}) 17.1 (CH₃CH—), 21.1 (COCH₃), 55.2 (CH₃CH—), 84.2 (=CHCO); yield = 74%.

 η^{4} -(E)-[CH₃CH—CHCOCH₂Ph]Fe(CO)₂PPh₃, 2b (RX = PhCH₂-Br): yellow solid; IR ν_{CO} (THF, cm⁻¹) 1990, 1925, 1470, 1430; ¹H NMR (C₆D₆, δ) 7.78–7.68, 7.11–6.98 (m, 15H, 3Ph), 4.95 (dd, J = 8.4, $J_{H-P} = 2.0$ Hz, 1H, —CHCO), 4.04, 3.69 (2dd, J = 14.8, $J_{H-P} = 1.7$ Hz, 2H, CH₂Ph), 1.52 (qd, J = 7.3, 2.0 Hz, 1H, CH₃CH—), 0.99 (dd, J = 7.3, 0.6 Hz, 3H, CH₃CH—); ¹³C NMR (CDCl₃, δ {H}) 17.6 (CH₃CH—), 42.4 (COCH₂Ph), 56.5 (CH₃CH—), 85.0 (—CHCO); yield = 87%.

 η^{4} -(E)-[CH₃CH=CHCOCH₂CH₂CH₂CH₃]Fe(CO)₂PPh₃, 2c (RX = CH₃(CH₂)₃]: yellow solid; IR ν_{CO} (THF, cm⁻¹) 1988, 1926, 1331; ¹H NMR (C₆D₆, δ) 7.80–7.62 (m, 5H, Ph), 7.11–6.92 (m, 15H, 3Ph), 4.98 (dd, J = 8.3, J_{H-P} = 2.0 Hz, 1H, =CHCO), 2.76–2.40 (m, 2H, COCH₂), 1.78–1.20 (m, 5H, CH₃CH=, COCH₂CH₂CH₂-), 1.14 (dd, J = 6.4, J_{H-P} = 0.8 Hz, 3H, CH₃CH=, 0.84 (t, J = 7.3 Hz, 3H, -CH₂CH₃); ¹³C NMR (C₆D₆, δ {¹H}) 14.0, 23.0, 30.9, 35.3 (CH₂CH₂CH₂CH₂CH₃), 17.2 (CH₃CH=), 55.9 (CH₃CH=), 83.5 (=CHCO); yield = 78%.

 $η^{4-}(E)-[CH_3CH=CHCOCH(CH_3)_2]Fe(CO)_2PPh_3, 2d (RX = (CH_3)_2CHBr): yellow solid; IR ν_{CO} (THF, cm⁻¹) 1950, 1935, 1630; ¹H NMR (C₆D₆, δ) 7.82–7.70, 7.12–6.95 (m, 15H, 3Ph), 5.08 (dd, J = 8.4, J_{H-P} = 2.4 Hz, 1H, -CHCO), 2.86 (septets of d, J = 6.9, J_{H-P} = 1.7 Hz, 1H, -CH(CH_3)_2), 1.50 (m, 1H, CH_3CH=), 1.36, 1.30 (2d, J = 6.9, 6.9 Hz, 6H, CH(CH_3)_2), 1.10 (d, J = 6.2 Hz, 3H, CH₃CH=); ¹³C NMR (C₆D₆, δ, {¹H}) 17.1 (CH₃CH=), 20.8, 21.7 (CH(CH_3)_2), 33.7 (CH-(CH_3)_2), 57.0 (CH₃CH=), 80.9 (=-CHCO); yield = 73%.$

 η^{4} -(*E*)-[CH₃CH=CHCOCH₂CH=CH₂]Fe(CO)₂PPh₃, 2e (RX = CH₂=CHCH₂]: yellow solid; IR ν_{CO} (THF, cm⁻¹) 1994, 1931, 1721, 1482, 1434; ¹H NMR (C₆D₆, δ) 7.78–7.65, 7.12–6.92 (m, 15H, 3Ph), 6.22–6.12 (m, 1H, -CH=CH₂), 5.15 (dq, J = 17.0, 1.5 Hz, 1H, one of CH=CH₂), 5.10–4.98 (m, 2H, =CHCO, one of CH=CH₂), 3.45–3.12 (m, 2H, COCH₂), 1.56 (m, 1H, CH₃CH=), 1.08 (d, J = 6.3 Hz, 3H, CH₃CH=); ¹³C NMR (C₆D₆, δ, ^[1H]) 17.5 (CH₃CH=), 40.6 (COCH₂), 56.8 (CH₃CH=), 84.3 (=CHCO), 118.4, 134 (CH=CH₂); yield = 61%. A minor product η^{3} -(C₃H₅)₂Fe(CO)₂, was also obtained in this case and identified by comparison to known material.¹¹

 $\eta^{4-}(E)-[CH_{3}CH=CHCOCH_{2}Ph]Fe(CO)_{2}P(OMe)_{3}, 4b (RX = PhCH_{2}Br): yellow oil; IR ν_{CO} (THF, cm⁻¹) 1999, 1937, 1645; ¹H NMR (C₆D₆, δ) 7.46–7.36, 7.22–7.01 (m, 5H, Ph), 4.95 (dd, <math>J = 8.4, J_{H-P} = 2.7$ Hz, 1H, =CHCO), 4.02 (dd, $J = 14.8, J_{H-P} = 3.1$ Hz, 1H, one of CH₂Ph), 3.76 (dd, $J = 14.8, J_{H-P} = 3.9$ Hz, 1H, one of CH₂Ph), 3.76 (dd, $J = 14.8, J_{H-P} = 3.9$ Hz, 1H, one of CH₂Ph), 3.48 (s, 9H, 3(OMe)), 2.05–1.82 (m, 1H, CH₃CH=), 1.35 (dd, $J = 6.4, J_{H-P} = 2.7$ Hz, 3H, CH₃CH=); yield = 85%.

 η^{4} -(E)-[CH₃CH=CHCOCH₂Ph]Fe(CO)₂P(OPh)₃, 3b (RX = PhCH₂Br): yellow oil; IR ν_{CO} (THF, cm⁻¹) 1998, 1965, 1585, 1475; ¹H NMR (C₆D₆, δ) 7.37-7.28, 7.10-6.98, 6.92-6.80 (m, 20H, 4Ph), 4.95 (dd, J = 8.3, J_{H-P} = 2.7 Hz, 1H, =-CHCO), 3.90 (dd, J = 15.2, J_{H-P} = 3.9 Hz, 1H, one of CH₂Ph), 3.68 (dd, J = 15.2, J_{H-P} = 4.9 Hz, 1H, one of CH₂Ph), 2.18 (m, 1H, CH₃CH=-), 1.40 (dd, J = 6.4, J_{H-P} = 3.0 Hz, 3H, CH₃CH=-); yield = 84%.

Reaction of η^3 -[CH₂--CH---CH₂]Fe(CO)₃Na with PhCH₂Br under Various Conditions. To η^3 -[CH₂---CH---CH₂]Fe(CO)₃Na (from η^3 -[CH₂---CH---CH₂]Fe(CO)₃I, 0.5 g, 1.6 mmol) in THF (30 mL) solution was added PhCH₂Br (1.2 equiv) at 0 °C. The mixture was stirred for 30 min at 0 °C, and then the procedure was varied as follows: (1) CO was purged through the solution for 20 h at 0 °C. The normal workup procedure gave a mixture of three compounds which were purified by flash column chromatography using silica gel and hexane/CH₂Cl₂. (2) Acetonitrile (20 mL) was added. The reaction mixture was stirred at room temperature for 12 h, followed by the normal workup procedure to give the products which were purified as above. (3) Acetonitrile (20 mL) was added. The reaction mixture was irradiated using a sun lamp for 3 h at 0 °C, then filtered through silica gel, and solvent evaporated to give the products which were purified as above. The ratio of (E):(Z)-CH₃CH—CHCOCH₂Ph/CH₂—CHCH₂COCH₂-Ph and the overall yield is as follows: (1) 2:1:2, 145 mg, 81%; (2) 3.5: trace:1, 140 mg, 78%; and (3) 1:trace:9, 143 mg, 80%.

Product Characterizations. (*E*)-CH₂CH—CHCOCH₂Ph, 10: colorless oil; IR ν_{CO} (THF, cm⁻¹) 1641; ¹H NMR (C₆D₆, δ) 7.20–6.98 (m, 5H, Ph), 6.58 (dq, J = 15.6, 6.9 Hz, 1H, —CHCO), 5.90 (dq, J = 15.6, 1.7 Hz, 1H, CH₃CH—), 3.46 (s, 2H, CH₂Ph), 1.25 (dd, J = 6.9, 1.7 Hz, 3H, CH₃).

CH₂—CHCH₂COCH₂Ph: colorless oil; IR ν_{CO} (THF, cm⁻¹) 1721; ¹H NMR (C₆D₆, δ) 7.18–7.00 (m, 5H, Ph), 5.89 (m, 1H, CH₂—CH-), 5.00 (dq, J = 10.3, 1.6 Hz, 1H, *trans*-H of CH₂—CH-), 4.88 (dq, J = 17.0, 1.6 Hz, 1H, *cis*-H of CH₂—CH-), 3.27 (s, 2H, CH₂Ph), 2.81 (dt, J = 6.9, 1.6 Hz, 2H, —CHCH₂).

(Z)-CH₃CH—CHCOCH₂Ph: colorless oil; IR ν_{CO} (THF, cm⁻¹) 1621; ¹H NMR (CDCl₃, δ) 7.10–6.94 (m, 5H, Ph), 5.84 (dq, J = 15.4, 1.7 Hz, 1H, CH₃CH—), 5.65 (dq, J = 15.4, 6.8 Hz, 1H, —CHCO), 3.38 (s, 2H, CH₂Ph), 1.98 (dd, J = 6.8, 1.7 Hz, 3H, CH₃).

 η^3 -sym-[CH₃CH·-CH·-CH·-CH₂]Fe(CO)₃I. A modified literature procedure was used.¹⁶ To a solution of *cis*- and *trans*-crotyl iodide (10 g, 55 mmol) in hexane (300 mL) was added Fe₂(CO)₉ (40 g, 2 equiv). The mixture was warmed to 40 °C, and stirring was continued for 5 h. Ethyl ether was added and the solution was filtered through silica gel. The solvent was removed to give a mixture of two isomers (only *syn* isomers were obtained, 1:1 mixture of *endo* and *exo* isomers at 25 °C, 4.4 g, yield = 25%):¹⁶ IR ν_{CO} (THF, cm⁻¹) 2075, 2020, 2010; ¹H NMR (C₆D₆, δ) 4.45 (ddd, J = 12.6, 6.3, 6.3 Hz, 1H, \neg ·CH⁻··CH₂), 3.38 (td, J = 12.5, 7.6 Hz, 1H, CH₃CH⁻··), 3.21 (d, J = 7.6 Hz, 1H, *syn*-H of \neg ·CH₂), 3.05 (d, J = 13.5 Hz, 1H, *anti*-H of \neg ·CH₂), 1.18 (d, J = 6.3 Hz, 3H, CH₃; second isomer: 5.31 (td, J = 12.4, 7.8 Hz, 1H, \neg ·CH⁻··CH₂), 2.84 (dd, J = 7.7, 1.5 Hz, 1H, *syn*-H of \neg ·CH₃), 1.26 (d, J = 12.3 Hz, 1H, *anti*-H of \neg ·CH₃), 1.26 (d, J = 12.3 Hz, 1H, *anti*-H of \neg ·CH₃).

 η^3 -sym-[CH₃CH·-CH₂]Fe(CO)₃Br. Following the same procedure as previously reported¹⁶ using crotyl bromide gave the product in 40% yield: IR ν_{CO} (CHCl₃, cm⁻¹) 2083, 2030, 2009; ¹H NMR (CDCl₃, δ) major isomer, 4.82 (td, J = 12.9, 7.9 Hz, 1H, $\neg \neg$ CH·-CH₂), 4.94 (m, 1H, CH₃CH·-), 4.38 (d, J = 7.9 Hz, 1H, syn-H of $\neg \neg$ CH₂), 3.18 (d, J = 12.9 Hz, 1H, anti-H of $\neg \neg$ CH₂), 2.01 (d, J = 6.3 Hz, 3H, CH₃); minor isomer, signals obscured by major isomer.

 η^3 -sym-[CH₃CH₂CH₂CH⁻⁻CH⁻⁻CH⁻⁻CH₂]Fe(CO)₃I. Following the same procedure as above using a mixture of *cis* and *trans*-1-iodo-2-hexene (10 g, 48 mmol) and Fe₂(CO)₉ (34.6 g, 96 mmol) gave the product as a dark brown solid (33% yield, 5.54 g, 1.4:1 isomer mixture): IR ν_{CO} (CHCl₃, cm⁻¹) 2075, 2025, 2010; ¹H NMR (CDCl₃, δ) major isomer, 4.72 (m, 1H, -CH₂CH⁻⁻CH⁻⁻), 4.41 (td, J = 12.9, 7.9 Hz, 1H, \neg -CH⁻⁻CH₂), 3.98 (dd, J = 7.9, 1.5 Hz, 1H, syn-H of \neg -CH⁻⁻CH₂, 3.48 (d, J = 12.9 Hz, 1H, anti-H of \neg -CH⁻⁻CH₂), 2.40–1.20 (m, 4H, -CH₂CH₂-), 1.04 (t, J = 7.3 Hz, 3H, CH₃); minor isomer, 5.68 (td, J = 12.3, 7.8 Hz, 1H, \neg -CH⁻⁻CH₂), 4.80–4.65 (m, 1H, -CH₂CH⁻⁻CH₂⁻⁻), 3.50 (d, J = 7.8 Hz, 1H, syn-H of \neg -CH⁻⁻CH₂), other peaks are obscured.

 η^{3-} sym-[CH₃CH₂CH₂CH₇·CH⁻⁻CH₂]Fe(CO)₃Br. Following the same procedure as above using *cis,trans*-1-bromo-2·hexane (10 g, 61 mmol) and Fe₂(CO)₉ (44.2 g, 122 mmol) gave the product as a dark brown solid (34% yield, 6.3 g, single isomer): IR ν_{CO} (Et₂O, cm⁻¹) 2083, 2035, 2007; ¹H NMR (CDCl₃, δ) 4.80 (td, J = 12.8, 7.9 Hz, 1H, \neg ·CH⁻⁻CH₂), 4.44 (m, 1H, -CH₂CH⁻⁻), 4.21 (d, J = 7.7 Hz, 1H, *syn*-H of \neg ·CH⁻⁻ CH₂), 3.21 (dt, J = 13.0, 1.1 Hz, 1H, *anti*-H of \neg ·CH⁻⁻CH₂), 2.58-2.41 (m, 1H, one of -CH₂CH⁻⁻), 2.08-1.50 (m, 3H, one of -CH₂CH⁻⁻, CH₃CH₂), 1.04 (t, J = 7.2 Hz, 3H, CH₃).

 $sy_{B-\eta}^{3}$ -[PhCH⁻⁺CH₂]Fe(CO)₃Br. Following the same procedure as reported previously¹⁷ gave the the title compound as a dark yellow solid (60% yield, 11.1 g, two isomers, 5.8:1): ¹H NMR (CDCl₃, δ) major isomer, 7.50–7.30 (m, 5H, Ph), 5.62 (td, J = 13.0, 7.9 Hz, 1H, \neg -CH⁻⁺CH₂), 5.38 (d, J = 13.0 Hz, 1H, PhCH⁻⁻), 4.31 (dd, J = 7.9, 1.1 Hz, 1H, syn-H of \neg -CH₂), 3.45 (dt, J = 13.0, 1.1 Hz, 1H, anti-H of \neg -CH₂); minor isomer, 6.05 (m, 1H, \neg -CH₂), 4.42 (d, J = 13.5 Hz, 1H, PhCH⁻⁻), 3.86 (dd, J = 8.0, 1.1 Hz, 1H, syn-H of \neg -CH₂), 2.52 (dt, J = 13.5, 1.1 Hz, 1H, anti-H of \neg -CH₂).

 η^3 -[CH₂--C(CH₃)--CH₂]Fe(CO)₃I. Following the same procedure as reported previously¹⁸ gave the the title compound as a dark brown solid (75% yield, 13.3 g, single isomer): ¹H NMR (CDCl₃, δ) 4.08 (s, 2H, syn-H of CH₂--C(CH₃)--CH₂), 3.79 (t, J = 1.1 Hz, 2H, anti-H of CH₂--C(CH₃)--CH₂), 2.02 (s, 3H, CH₂--C(CH₃)--CH₂).

Reaction of $syn-\eta^3$ -[CH₃CH⁻⁻CH⁻⁻CH⁻⁻CH₂Fe(CO)₃Na with RX (R = -CH₃, -CH₂Ph). Trapping with PPh₃. To $syn-\eta^3$ -[CH₃CH⁻⁻CH⁻⁻CH₂]Fe(CO)₃Na (from $syn-\eta^3$ -[CH₃CH⁻⁻CH⁻⁻CH⁻⁻CH₂]Fe(CO)₃I, 0.5 g, 1.6 mmol) in THF (30 mL) at 0 °C was added RX (1.92 mmol). After

stirring for 20 min at 0 °C, PPh₃ (0.84 g, 3.2 mmol) was added as a solid. Stirring was continued at 25 °C for 2 h. The normal workup procedure gave the crude product as a mixture of three complexes which were purified by flash column chromatography using hexane/CH₂Cl₂ (For RX = MeI, 13a/13b/13c = 6:3:1, 0.62 g, 82%, for RX = PhCH₂Br, 14a/14b/14c = 2:1:trace, 81%, 0.71 g). Characterization of these complexes is described below.

The Reaction of $anti-\eta^3$ -[CH₃CH⁻⁻CH₋-CH₂Fe(CO)₃⁻ with CH₃I. Trapping with PPh₃. $anti-\eta^3$ -[CH₃CH⁻⁻CH⁻⁻CH₂]Fe(CO)₃⁻ was prepared *in situ* from the reaction of butadiene iron tricarbonyl (0.3 g, 1.5 mmol) with KB(CH₂CH₃)₃H (3.7 mL 1 M THF solution, 2.4 equiv) at 0 °C in THF (30 mL). MeI (0.26 mL, 4 mmol) was added, and the solution was stirred for 5 min. PPh₃ (0.52 g, 2.0 mmol) was added, and stirring was continued for another 2 h at 25 °C. The reaction mixture was quenched with water, extracted with ether, dried over MgSO₄, and filtered through silica gel, and the solvent was evaporated to give three products (13a/13b/13c = 6:3:1) in 71% yield (0.5 g). Further separation was performed by flash column chromatography on silica gel eluting with petroleum ether/ether, 20:1-5:1. Elution order: 13b, 13a, 13c.

Reaction of anti- η^3 -[CH₃CH⁻⁻CH₂]Fe(CO)₃⁻ with PhCH₂Br. Trapping with PPh₃. anti- η^3 -[CH₃CH⁻⁻CH₂]Fe(CO)₃⁻ was generated *in situ* from the reaction of anti- η^3 -[CH₃CH⁻⁻CH₂]Fe(CO)₃(SnMe₃) (0.5 g, 1.4 mmol) with MeLi (1.6 M in diethyl ether, 1.2 equiv, 1.1 mL) in THF (30 mL) at 0 °C. To this solution was added PhCH₂Br (0.2 mL, 1.7 mmol). After stirring for 5 min, PPh₃ (0.43 g, 1.7 mmol) was added, and the mixture was stirred for 2 h at 25 °C. The reaction mixture was quenched with water, extracted with ether, dried over MgSO₄, and filtered through silica gel, and solvent was evaporated to give two products (14a/14b = 2:1) in 75% yield (0.58 g). Further separation was performed by flash column chromatography on silica gel eluting with petroleum ether/ether, 20:1-5:1. Elution order: 14b, 14a.

Product Characterizations. $π^4$ -(*E*)-[CH₃CH—C(CH₃)COCH₃Fe(CO)₂-PPh₃, 13a: yellow solid; IR $ν_{CO}$ (C₆D₆, cm⁻¹) 1988, 1923; ¹H NMR (C₆D₆, *THF-d*₈, δ) 7.80–7.65, 7.11–6.94 (m, 15H, 3Ph), 2.18, 2.19 (d, J_{H-P} = 2.5 Hz, 3H, COCH₃), 1.85, 2.09 (d, J_{H-P} = 2.2 Hz, 3H, —C-(CH₃)CO), 1.57, *1.26* (quin, *J* = 6.8 Hz, 1H, CH₃CH—), 1.12, *1.08* (dd, *J* = 6.5, J_{H-P} = 1.4 Hz, 3H, CH₃CH—); ¹³C NMR (C₆D₆, δ) 13.9, 14.7, 18.7 (q, *J* = 127, 126, 127 Hz, CH₃CH—, —C(CH₃)CO, —CCOCH₃), 58.3 (d, *J* = 160 Hz, CH₃CH—), 95.1 (s, —C(CH₃)COCH₃), 211.1 (s, CH₃CO), 216.5 (d, J_{H-P} = 7.3 Hz, Fe(CO)₂); ³¹P NMR (C₆D₆, δ), 56.7; ¹³C NMR (C₆D₆, δ, {³¹P}, {¹H}) 216.5 (s, Fe(CO)₂).

 $η^{4}$ -(Z)-[CH₃CH—C(CH₃)COCH₃]Fe(CO)₂PPh₃, 13b: yellow solid; IR ν_{C0} (C₆D₆, cm⁻¹) 1990, 1927; ¹H NMR (C₆D₆, *THF-d₈*, δ) 7.80–7.65, 7.11–6.94 (m, 15H, 3Ph), 2.61, 2.47 (qd, J = 6.7, $J_{H-P} = 1.5$ Hz, 1H, CH₃CH=), 1.97, 1.94, 2.13, 1.96 (2d, $J_{H-P} = 1.6$, 1.9 Hz, 6H, COCH₃, —C(CH₃)CO), 1.19, 0.85 (dd, $J_{H-P} = 3.3$, J = 6.7 Hz, 3H, CH₃CH=); ¹³C NMR (C₆D₆, δ) 13.2, 19.3, 20.4 (q, J = 127, 119, 119 Hz, CH₃CH=, —C(CH₃)CO, —CCOCH₃), 55.3 (d, J = 145 Hz, CH₃CH=), 91.7 (s, —C(CH₃)COCH₃), 211.1 (s, CH₃CO), 216.5 (d, $J_{H-P} = 7.3$ Hz, Fe-(CO)₂).

 $η^{4}$ -[CH₂—C(CH₂CH₃)COCH₃]Fe(CO)₂PPh₃, 13c: yellow solid; IR $ν_{CO}$ (C₆D₆, cm⁻¹) 1988, 1923; ¹H NMR (C₆D₆, δ) 7.80–7.65, 7.11–6.94 (m, 15H, 3Ph), 2.68–2.45 (m, 1H, *trans*-H of CH₂—), 2.31 (d, J_{H-P} = 2.7 Hz, 3H, COCH₃), 1.45–1.18 (m, 3H, *cis*-H of CH₂—, —C(CH₂-CH₃)), 1.08 (t, J = 7.5 Hz, 3H, —C(CH₂CH₃).

η⁴⁻(E)-[CH₂CH—C(CH₃)COCH₂Ph]Fe(CO)₂PPh₃, 14a: yellow solid; IR ν_{CO} (C₆D₆, cm⁻¹) 1988, 1925; ¹H NMR (C₆D₆, δ) 7.79–7.62, 7.40– 6.95 (m, 20H, 4Ph), 4.40 (dd, J = 14.4, $J_{H-P} = 2.0$ Hz, 1H, one of CH₂Ph), 3.65 (d, J = 14.4 Hz, 1H, one of CH₂Ph), 1.94 (d, $J_{H-P} = 2.1$ Hz, 3H, —C(CH₃)CO), 1.54 (quin, J = 6.9 Hz, 1H, CH₃CH—), 1.06 (dd, J = 6.6, $J_{H-P} = 1.5$ Hz, 3H, CH₃CH—); ¹³C NMR (C₆D₆, δ) 13.8, 14.4 (q, J = 127, 126 Hz, CH₃CH=, —C(CH₃)(CO), 39.8 (t, J = 129Hz, CH₂Ph), 59.6 (d, J = 129 Hz, CH₃CH—), 96.4 (s, —C(CH₃)CO), 126.6 (d, J = 160 Hz, C_p of CH₂Ph), 128.7, 129.4 (d, J =overlap, 156 Hz, C_m , C_o of CH₂Ph), 138.7 (s, C_i of CH₂Ph), 210.8 (s, CH₂PhCO), 216.3 (d, $J_{H-P} = 7.4$ Hz, Fe(CO)₂).

 $\eta^{4-(Z)}$ -[CH₃CH=C(CH₃)COCH₂Ph]Fe(CO)₂PPh₃, 14b: yellow solid; IR ν_{CO} (C₆D₆, cm⁻¹) 1993, 1929; ¹H NMR (C₆D₆, δ) 7.79-7.62, 7.40-6.95 (m, 20H, 4Ph), 4.16 (d, J = 14.4 Hz, 1H, one of CH₂Ph), 3.24 (d, J = 14.4 Hz, 1H, one of CH₂Ph), 2.58 (qd, J = 6.8, $J_{H-P} = 1.4$ Hz, 1H, CH₃CH=), 2.02 (d, $J_{H-P} = 1.5$ Hz, 3H, -C(CH₃)CO), 1.14 (dd, J = 6.6, $J_{H-P} = 3.3$ Hz, 3H, CH₃CH=); ¹³C NMR (C₆D₆, δ) 13.0, 20.3 (q, J = 127, 127 Hz, CH₃CH=); ¹³C NMR (C₆D₆, \delta) 13.0, 20.3 (q, J = 127, 127 Hz, CH₃CH=, -C(CH₃)CO), 40.22 (t, J = 127 Hz, CH₂Ph) 55.9 (d, J = 138 Hz, CH₃CH=), 92.9 (s, -C(CH₃)CO), 126.6 (d, J = 161 Hz, C_p of CH₂Ph), 128.8, 129.1 (d, J = 0verlap, 156 Hz, Cm, C₀ of CH₂Ph), 138.6 (s, C₁ of CH₂Ph), 210.8 (s, CH₂PhCO), 216.3 (d, $J_{H-P} = 7.4$ Hz Fe(CO)₂). η^{4} -[CH₂=-C(CH₂CH₃)COCH₂Ph]Fe(CO)₂PPh₃, 14c: yellow oil; IR ν_{CO} (THF, cm⁻¹) 1990, 1923; ¹H NMR (C₆D₆, δ) 7.79–7.62, 7.40–6.95 (m, 20H, 4Ph), 4.45 (dd, J = 14.4, $J_{H-P} = 2.0$ Hz, 1H, one of CH₂Ph), 3.94 (d, J = 14.4 Hz, 1H, one of CH₂Ph), 2.71 (m, 1H. *trans*-H of CH₂=-), 1.70–1.40 (m, 3H, --C(CH₂CH₃), *cis*-H of CH₂=-), 0.98 (t, J = 7.5 Hz, 3H, --C(CH₂CH₃)).

Reactions of $syn \cdot \eta^3 \cdot [CH_3CH - CH - CH_2]Fe(CO)_3Na$ with PhCH₂Br under Various Conditions. To $syn \cdot \eta^3 - [CH_3CH - CH_2]Fe(CO)_3$. Na (from $syn \cdot \eta^3 - [CH_3CH - CH - CH_2]Fe(CO)_3$], 0.5 g, 1.6 mmol) in THF (20 mL) solution was added PhCH₂Br (1.2 equiv) at 0 °C. The mixture was stirred for 30 min at 0 °C, and then the procedure was varied as follows: (1) Acetonitrile (20 mL) was added. The reaction mixture was stirred at 25 °C for 18 h, then filtered through Celite, and solvent evaporated to give the crude products which were purified by flash column chromatography using silica gel and hexane/CH₂Cl₂. (2) Acetonitrile (20 mL) was added. The reaction mixture was irradiated using a sun lamp for 1 hat 0 °C and worked up as above. (3) CO was purged through the solution for 3 h at 0 °C and worked up as above.

The ratio of the products and overall yield is as follows: (1) 16a/16b/16c = 6:2:1, 72%, 200 mg, (2) 7:2.8:1, 73%, 200 mg; and (3) 20:2:1, 77%, 210 mg.

Reaction of anti-\eta^3-[CH₃CH·-·CH⁻⁻CH⁻⁻CH₂]Fe(CO)₃ with PhCH₂Br. Trapping with CH₃CN. anti-\eta^3-[CH₃CH·-·CH₂]Fe(CO)₃ was generated in situ from the reaction of anti-\eta^3-[CH₃CH·-·CH⁻⁻CH₂]Fe(CO)₃(SnMe₃) (0.3 g, 0.8 mmol) with MeLi (1.2 equiv, 0.63 mL) in THF (30 mL) at 0 °C. To this solution was added PhCH₂Br (0.12 mL, 1.0 mmol). After stirring for 5 min at 0 °C, acetonitrile (30 mL) was added and stirred for 3 days at 25 °C. Standard workup gave three products (16a/16b/16c = 6:2:1) in 62% yield (86 mg). Further separation was performed by preparative thin-layer chromatography using hexane/ EtOAc. Elution order: 16b, 16a, 16c.

Product Characterizations. (*E*)-CH₂CH—CHCH₂COCH₂Ph, 16a: IR ν_{CO} (THF, cm⁻¹) 1718; ¹H NMR (C₆D₆, δ) 7.12–6.90 (m, 5H, Ph), 5.48 (m, 1H, CH₃CH=CH-), 5.21 (m, 1H, CH₃CH=CH-), 3.27 (s, 2H, CH₂Ph), 2.78 (m, 2H, =CHCH₂CO), 1.47 (dq, J = 6.3, 1.4 Hz, 3H, CH₃CH=); decoupling exp., irradiation at CH₃ gives 5.48 (dt, J = 15.1, 6.9 Hz, 1H, CH₃CH=CHCH₂), 5.21 (d, $J_{tr} = 15.1$ Hz, 1H, CH₃CH=CH-); ¹³C NMR (CDCl₃, δ {H}) 18.0 (CH₃), 45.9, 49.4 (-CH₂-COCH₂Ph), 122.9, 134.2 (-CH=CH-).

CH₂—CHCH(CH₃)COCH₂Ph, 16b: IR ν_{CO} (hexane/CH₂Cl₂, cm⁻¹) 1721;¹H NMR (C₆D₆, δ) 7.15–6.90 (m, 5H, Ph), 5.60 (m, 1H, CH₂—CH), 4.88 (m, 2H, CH₂—CH-), 3.28 (s, 2H, COCH₂Ph), 2.95 (quin, J =6.9 Hz, 1H, —CHCH(CH₃)-), 1.00 (d, J = 6.8 Hz, 3H, CH₃).

(E)-CH₃CH=C(CH₃)COCH₂Ph, 16c: $IR \nu_{C0}$ (THF, cm⁻¹) 1628; ¹H NMR (C₆D₆, δ) 7.17–6.98 (m, 5H, Ph), 6.35 (qq, J = 6.9, 1.4 Hz, 1H, CH₃CH=), 3.66 (s, 2H, CH₂Ph), 1.68 (m, 3H, =C(CH₃)), 1.30 (dq, J = 6.9, 1.0 Hz, 3H, CH₃CH=).

Low-Temperature ¹H NMR Monitoring of the Reaction of anti-Methallyl Iron Tricarbonyl Anion, anti-12, with CH3I Followed by Trapping with PPh₃. To an *anti*-[CH₃CH \rightarrow CH \rightarrow CH \rightarrow CH₂]Fe(CO)₃⁻K⁺ (8 mg, 0.03 mmol)¹⁴ in THF-d₈ (0.55 mL) was added MeI (4.3 μ L, 2 equiv) at -78 °C. All starting material was converted to (anti-methallyl)Fe(CO)3-(CH₃), anti-17, at -60 °C. To this solution was added PPh₃ (24 mg, 0.10 mmol) in THF-d₈ (0.06 mL) at -78 °C. The NMR spectrum indicated the immediate disappearance of the Fe-CH3 peak (-0.47 ppm) and formation of new metal-acyl peak (2.76 ppm) at this temperature. Upon warming to -29 °C, anti complex, anti-18, generated in situ, isomerized to the thermodynamically more stable syn isomer, syn-18. The rate of isomerization of anti-18 to syn-18 was measured at -29 °C. The decrease in the intensity of the signal at δ 1.00 assigned to anti-18 was monitored relative to the increase in the intensity of the signal at δ 1.11 assigned to syn-18. After syn-18 was formed the solution was warmed to 6 °C, and the acyl group $(CH_3C(O))$ in syn-18 migrated exclusively to the substituted carbon (C₁) of the allyl moiety to generate the η^4 - β , γ complex, 19. The rate of migration was measured at 6 °C. The decrease in the intensity at δ 2.83 assigned to syn-18 was monitored relative to the THF d_8 signal at δ 3.58. Upon warming to 11 °C, hydride migration occurred from the η^4 - β , γ complex, 19, to yield the more stable η^4 - α , β complexes, 13a,b. The decrease in the intensity at δ 1.82 assigned to the acyl group of β , γ complex, 19, was monitored relative to the constant THF- d_8 signal at δ 3.58. The ¹H NMR data for all intermediates observed are summarized below.

anti-[CH₃CH···CH···CH₂]Fe(CO)₃(CH₃), **anti-**17: ¹H NMR (THFd₈, δ) 4.18 (quin, J = 7.0 Hz, 1H, ···CHCH₃), 3.81 (dt, $J_{tr} = 12.9$, $J_{cis} = 7.4$ Hz, 1H, CH₂···CH), 3.34 (d, J = 7.4 Hz, 1H, syn-H of CH₂···), 2.88 (d, J = 12.9 Hz, 1H, anti-H of CH₂···), 1.32 (d, J = 7.1 Hz, 3H, ···CHCH₃), -0.47 (s, 3H, Fe(CH₃)). anti-[CH₃CH···CH···CH₂]Fe(CO)₂(PPh₃)(COCH₃), anti-18: ¹H NMR (THF- d_8 , δ , -30 °C) 4.08 (ddt, $J_{H-P} = 18.1$, $J_{tr} = 13.7$, $J_{cls} = 8.1$ Hz, 1H, CH₂···CH), 3.64 (quin, J = 7.6 Hz, 1H, ···CHCH₃), 3.09 (d, J = 8.1 Hz, 1H, syn-H of CH₂···), 3.00 (dd, J = 13.4, $J_{H-P} = 3.2$ Hz, 1H, anti-H of CH₂···), 2.76 (s, 3H, Fe(COCH₃), 1.00 (d, J = 6.4 Hz, 3H, ···CHCH₄).

sym-[CH₃CH···CH···CH₂Fe(CO)₂(PPh₃)(COCH₃), sym-18: ¹H NMR (THF-d_8, \delta, -30 °C) 4.31 (qd, J_{H-P} = 13, J_{tr} = 13, J_{cts} = 8 Hz, 1H, CH₂-··CH), 2.87 (s, 3H, Fe(COCH₃), 2.85 (m, 1H, -··CHCH₃), 2.24 (d, J = 7.6 Hz, 1H, sym-H of CH₂-··), 1.65 (dd, J = 13.1, J_{H-P} = 6.8 Hz, 1H, anti-H of CH₂-··), 1.11 (d, J = 6.4 Hz, 3H, -··CHCH₃).

 η^{4} -[CH₂—CHCH(CH₃)COCH₃]Fe(CO)₂PPh₃, 19: ¹H NMR (THFd₈, δ , 6 °C) 1.82 (s, COCH₃), 1.43 (d, J = 8.0 Hz, —CHCH(CH₃)). The remaining signals were obscured.

Reaction of $sy_{D-\eta}^{3}$ -[CH₂ \neg -CH \neg -CHCH₂CH₂CH₂CH₂]Fe(CO)₃Na with CH₃I. Trapping with PPh₃. Following the same procedure as that for $sy_{n-\eta}^{3}$ -[CH₃CH \neg -CH \neg -CH \neg]Fe(CO)₃Na, reaction of η^{3} -[CH₂ \neg -CH \neg -CHCH₂CH₂CH₃]Fe(CO)₃Na (1.43 mmol) with CH₃I (0.24 g, 1.72 mmol) and PPh₃ (0.73 g, 2.9 mmol) gave complexes 26a and 26b as the major products. These were purified by flash column chromatography using silica gel and hexane/CH₂Cl₂ (1.1 g, 78%).

Reaction of $syn-\eta^3$ -[CH₂ \neg -CH \neg -CHCH₂CH₂CH₂CH₂]Fe(CO)₃Na with PhCH₂Br. Following the same procedure as described above, η^3 -[CH₂ \neg -CH \neg -CHCH₂CH₂CH₃]Fe(CO)₃Na (1.43 mmol), PhCH₂Br (0.29 g, 1.72 mmol) and PPh₃ (0.73 g, 2.9 mmol) gave complexes 27a and 27b as the major products. These were purified by flash column chromatography using silica gel and hexane/CH₂Cl₂ (0.6 g, 73%).

η⁴-(E)-[CH₃CH—C(CH₂CH₂CH₃)COCH₂Ph]Fe(CO)₂PPh₃, 27a: yellow oil; IR \nu_{CO} (CHCl₃, cm⁻¹) 1993, 1927; ¹H NMR (C₆D₆, δ) 7.80–7.68, 7.42–7.36, 7.15–6.95 (m, 20H, 4Ph), 4.38 (dd, J = 13.7, J_{H-P} = 2.0 Hz, 1H, one of CH₂Ph), 3.82 (d, J = 13.7 Hz, 1H, one of CH₂Ph), 2.70–2.52, 2.36–2.16 (m, 2H, —C(CH₂CH₂CH₃)), 1.59 (m, 1H, CH₃CH—), 1.48–1.18 (m, 2H, —C(CH₂CH₂CH₃)), 1.18 (dd, J = 7.0, J_{H-P} = 1.4 Hz, 3H, CH₃CH—), 0.82 (t, J = 7.2 Hz, 3H, —C(CH₂CH₂CH₃)); ¹³C NMR (C₆D₆, δ {¹H}) 13.8, 14.4, 23.5, 31.5, 39.2, 58.9, 100.0 (CH₃CH—C(CH₂CH₂CH₃)COCH₂Ph).

Reaction of syn_{\eta}^{3}-[PhCH-\cdotCH-\cdotCH₂]Fe(CO)₃Na with CH₃I. Following the same procedure as described above using syn_{\eta}^{3}-[PhCH\cdot\cdotCH₂]Fe(CO)₃Na (1.5 mmol), CH₃I (0.26 g, 1.8 mmol), and PPh₃ (0.79 g, 3.0 mmol) gave the product as a mixture of 28a and **29**. These were purified by flash column chromatography using silica gel and hexane/CH₂Cl₂ (83%, 4:1).

 $η^{4}$ -E-[PhCH₂CH—CHCOCH₃]Fe(CO)₂PPh₃, 28: yellow solid; IR ν_{CO} (THF, cm⁻¹) 1990, 1928; ¹H NMR (C₆D₆, δ) 7.79–7.65, 7.15–6.91 (m, 20H, 4Ph), 4.99 (dd, J = 8.3, $J_{H-P} = 2.2$ Hz, 1H, =CHCO), 2.69 (dd, J = 14.0, 5.6 Hz, 1H, one of PhCH₂), 2.55 (dd, J = 14.0, 9.8 Hz, 1H, one of PhCH₂), 2.55 (dd, J = 14.0, 9.8 Hz, 1H, one of PhCH₂), 2.06 (d, $J_{H-P} = 2.6$ Hz, 3H, COCH₃), 1.80 (m, 1H, PhCH₂CH=).

(*E*)-PhCH₂CH—CHCOCH₃, 29: IR ν_{CO} (THF, cm⁻¹) 1672; ¹H NMR (CDCl₃, δ) 7.30–7.18 (m, 5H, Ph), 6.85 (dt, J = 15.9, 6.8 Hz, 1H, PhCH₂CH=), 6.01 (dt, J = 15.9, 1.6 Hz, 1H, —CHCO), 3.48 (dd, J = 6.8, 1.4 Hz, 2H, PhCH₂-), 2.18 (s, 3H, CH₃).

The Reaction of syn_η^3 -[PhCH- \neg CH \neg CH₂Fe(CO)₃Na with Ph-CH₂Br. Trapping with PPh₃. Following the same procedure as described above, using syn_η^3 -[PhCH \neg CH \neg CH γ]Fe(CO)₃Na (1.5 mmol), PhCH₂Br (0.31 g, 1.8 mmol), and PPh₃ (0.79 g, 3.0 mmol) gave a mixture of two compounds, 30 and 31, which were purified by flash column chromatography using silica gel and hexane/CH₂Cl₂ (0.51 g, 85%, 4:1).

 η^{4} -(*E*)-[PhCH₂CH—CHCOCH₂Ph]Fe(CO)₂PPh₃, 30: IR ν_{CO} (THF, cm⁻¹) 1990, 1929; ¹H NMR (C₆D₆, δ) 7.78–7.65, 7.38–7.30, 7.15–6.72 (m, 25H, 5Ph), 5.10 (dd, J = 8.1, $J_{H-P} = 2.2$ Hz, 1H, —CHCO), 3.98 (dd, J = 15.0, $J_{H-P} = 1.6$ Hz, 1H, one of COCH₂Ph), 3.67 (d, J = 15.0 Hz, 1H, one of COCH₂Ph), 2.64 (dd, J = 14.6, 5.3 Hz, one of PhCH₂-CH—), 2.50 (dd, J = 14.6, 9.8 Hz, one of PhCH₂CH—), 1.79 (m, 1H, PhCH₂CH—); ¹³C NMR (C₆D₆, δ{¹H} 38.7, 41.9 (PhCH₂CH—, COCH₂-Ph), 61.8 (PhCH₂CH—), 82.7 (—CHCO).

(*E*)-PhCH₂CH—CHCOCH₂Ph, 31: IR ν_{C0} (THF, cm⁻¹) 1612; ¹H NMR (CDCl₃, δ) 7.39–7.10 (m, 10H, 2Ph), 7.00 (dt, J = 15.7, 6.9 Hz, 1H, PhCH₂CH—), 6.14 (dt, J = 15.7, 1.5 Hz, 1H, —CHCO), 3.82 (s, 2H, COCH₂Ph), 3.51 (dd, J = 6.9, 1.2 Hz, 2H, PhCH₂CH—).

Synthesis of $\pi^{4-}(E)$ -[(CH₃)₂C—CHCOCH₃]Fe(CO)₂PPh₃, 32. Following the normal procedure, $syn-\eta^{3}$ -[CH₂⁻⁻CH(CH₃)⁻⁻CH₂]Fe (CO)₃Na (1.6 mmol), CH₃I (0.27 g, 1.92 mmol), and PPh₃ (0.84 g, 3.2 mmol) gave the product, 32, as a yellow solid, which was purified by flash column chromatography using silica gel and hexane/CH₂Cl₂ (0.59 g, 78%): IR ν_{CO} (CHCl₃, cm⁻¹) 1988, 1924, 1481, 1436; ¹H NMR (C₆D₆, δ) 7.68–7.56, 7.09–6.92 (m, 15H, 3Ph), 4.71 (s, 1H, —CHCO), 1.65 (d, J = 4.5 Hz, 3H, COCH₃), 1.52–1.45 (m, 6H, 2CH₃).

Synthesis of η^4 -(*E*)-[(CH₃)₂C=CHCOCH₂Ph]Fe(CO)₂PPh₃, 33: Following the normal procedure, η^3 -[CH₂⁻⁻CH(CH₃)-⁻⁻CH₂]Fe(CO)₃Na (1.6 mmol), PhCH₂Br (0.31 g, 1.92 mmol), and PPh₃ (0.84 g, 3.2 mmol) gave 33 (yellow solid) as a major product, together with CH₂=C(CH₃)CH₂COCH₂Ph (4:1, 79%), which were purified by flash chromatography using silica gel and hexane/CH₂Cl₂: IR ν_{CO} (CHCl₃, cm⁻¹) 1992, 1929; ¹H NMR (CDCl₃, δ) 7.58–6.92 (m, 15H, 3Ph), 5.02 (s, 1H, =-CHCO), 3.53, 2.58 (2d, J = 14.2 Hz, 2H, CH₂Ph), 1.42 (d, J = 2.9 Hz, 3H, *trans*-CH₃), 1.31 (d, J = 4.5 Hz, 3H, *cis*-CH₃).

Synthesis of CH₂—C(CH₃)CH₂COCH₂Ph, 34: To η^3 -[CH₂⁻⁻CH (CH₃)⁻⁻CH₂]Fe(CO)₃Na (1.6 mmol) in THF (30 mL) at 0 °C was added PhCH₂Br (0.33 g, 1.92 mmol). After stirring for 20 min at 0 °C, acetonitrile (30 mL) was added, and then the reaction mixture was irradiated using a sun lamp at 0 °C for 2 h. Stirring for 12 h at 25 °C without light gave the same product. The mixture was filtered through silica gel to give a colorless oil which was purified by flash column chromatography using silica gel and hexane/CH₂Cl₂ (0.22 g, 78%): IR ν_{CO} (CHCl₃, cm⁻¹) 1716; ¹H NMR (CDCl₃, δ) 7.38–7.15 (m, 5H, Ph), 4.98 (t, *J* = 1.5 Hz, 1H, *cis*-H of CH₂—), 4.81 (s, 1H, *trans*-H of CH₂—), 3.75 (s, 2H, CH₂Ph), 3.16 (s, 2H, CH₂CO), 1.72 (s, 3H, CH₃); ¹³C NMR (CDCl₃, δ {¹H} 22.6 (CH₃), 49.1, 51.3 (CH₂Ph, CH₂CO), 115.3 (CH₂—), 134.1 (—C(CH₃)).

The Reaction of anti, syn- η^3 -[PhCH:-CHCH_3]Fe(CO)₃ with CH₃I. Trapping with PPh₃. anti, syn- η^3 -[PhCH:-CHCH₃]Fe (CO)₃ was generated in situ from the reaction of trans-1-phenylbutadiene iron tricarbonyl (300 mg, 1.11 mmol) with KBHEt₃ (2.4 equiv, 2.7 mL) in THF (30 mL) at 0 °C. To this solution was added CH₃I (0.26 mL, 4.0 mmol). After stirring for 5 min, PPh₃ (580 mg, 2.22 mmol) was added. Stirring was continued for 5 hat 25 °C. The mixture was filtered through silica gel and solvent evaporated to give crude product (35/36 = 5:1) which was purified by flash column chromatography on silica gel eluting with hexane/methylene chloride (85 mg, 58%). Elution order: 35, 36.

(E)-PhCH=CHCH(CH₃)COCH₃, 35: IR ν_{CO} (CDCl₃, cm⁻¹) 1709; ¹H NMR (CDCl₃, δ) 7.36–7.22 (m, 5H, Ph), 6.51 (d, J = 15.9 Hz, 1H, PhCH=CH), 6.16 (dd, $J_{tr} = 15.9$, J = 8.5 Hz, 1H, =CHCH(CH₃)), 3.34 (quin, J = 7.4 Hz, 1H, =CHCH(CH₃)), 2.19 (s, 3H, CH(CH₃)-COCH₃), 1.26 (d, J = 6.9 Hz, 3H, CH(CH₃)COCH₃); ¹³C NMR (CDCl₃, δ) 209.4 (s, COCH₃), 136.7 (s, C_i of Ph), 132.1 (d, J = 151 Hz, PhCH=CH), 128.7 (d, J = 153 Hz, PhCH=CH), 128.6 (d, J = 160Hz, C_o of Ph), 127.6 (d, J = 161 Hz, C_p of Ph), 126.2 (d, J = 157 Hz, C_m of Ph), 51.3 (d, J = 129 Hz, =CHCH(CH₃)CO).

(*E*)-PhCH₂CH—C(CH₃)C(O)CH₃, 36: IR ν_{CO} (C₆D₆, cm⁻¹) 1672; ¹H NMR (C₆D₆, δ) 7.36–7.22 (m, 5H, Ph), 6.32 (dt, J = 7.3, 1.5 Hz, 1H, PhCH₂CH==), 3.13 (d, J = 7.3 Hz, 2H, PhCH₂CH==), 1.87 (s, 3H, =C(CH₃)COCH₃), 1.81 (s, 3H, =C(CH₃)COCH₃).

The Reaction of anti,syn- η^3 -[PhCH--CH--CHCH₂]Fe(CO)₃ with CH₃I. Trapping with CH₃CN. anti,syn- η^3 -[PhCH--CHCH₃]Fe (CO)₃ was generated in THF as described above. To this solution CH₃I (0.26 mL, 4.0 mmol) was added. After stirring for 5 min, acetonitrile (30 mL) was added. Stirring was continued for 2 h at 0 °C under irradiation. The mixture was filtered through silica gel and solvent evaporated to give the crude product which was purified by flash column chromatography (silica gel, hexane/methylene chloride) to yield only (E)-PhCH—CHCH(CH₃)COCH₃, **35** (174 mg, 61%).

Synthesis of (E)-CH₃CH₂CH₂CH₂CH=CHCH₂COCH₂Ph, 41. To syn- η^3 -[CH₃CH₂CH₂CH⁻⁻CH⁻⁻CH₂]Fe(CO)₃Na (1.43 mmol) in THF (30 mL) at 0 °C was added PhCH₂Br (0.29 g, 1.72 mmol). After stirring for 20 min at 0 °C, acetonitrile (30 mL) was added, the reaction mixture was irradiated for 2 h and filtered through silica gel to give a colorless oil, which was purified by preparative thin-layer chromatography using hexane/CH₂Cl₂ (0.19 g, 67%): IR ν_{CO} (Et₂O, cm⁻¹) 1710; ¹H NMR (C₆D₆, δ) 7.18–7.00 (m, 5H, Ph), 5.58–5.22 (m, 2H, -CH=CH-), 3.34 (s, 2H, COCH₂Ph), 2.86 (dd, J = 6.6, 0.7 Hz, 2H, COCH₂CH=), 1.89 (dq, J = 6.8, 1.0 Hz, 2H, -CH₂CH=CH-), 1.30 (sextet, J = 7.2 Hz, 2H, CH₃CH₂-), 0.86 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (C₆D₆, δ [¹H]) 13.6 (-CH₃), 22.4 (-CH₂CH₃), 34.7 (=CHCH₂-), 46.0 (-CH₂CH=), 49.3 (-CH₂Ph), 121.8, 135.3 (-CH₂=CH₂-), 127.0, 128.7, 129.5 (Ph).

Synthesis of (E)-PhCH—CHCH₂COCH₂Ph, 42. To syn_{7}^{3} -[PhCH···CH₂]Fe(CO)₃Na (1.5 mmol) in THF (30 mL) at 0 °C was added PhCH₂Br (0.31 g, 1.8 mmol). After stirring for 20 min at 0 °C, acetonitrile (30 mL) was added, and the mixture irradiated at 0 °C for 2 h and then filtered through a short column of silica gel to give the crude title compound as a colorless oil which was purified by preparative thin-layer chromatography (0.24 g, 74%): IR ν_{CO} (hexane, cm⁻¹) 1710; ¹H NMR (CDCl₃, δ) 7.39–7.11 (m, 10H, 2Ph), 6.42 (d, J = 15.7 Hz, 1H, PhCH—), 6.24 (dt, J = 15.7, 6.6 Hz, 1H, —CHCH₂), 3.76 (s, 2H, COCH₂Ph), 3.56 (d, J = 6.6 Hz, 2H, —CHCH₂CO).

Synthesis of (E)-PhCH—CHCH₂COCH₃, 43. Following the same procedure as above and using CH₃I (0.28 g, 1.92 mmol) gave the title product as a colorless oil which was purified as above (0.15 g, 63%). IR ν_{CO} (CHCl₃, cm⁻¹) 1713; ¹H NMR (CDCl₃, δ) 7.40–7.31 (m, 5H, Ph), 6.47 (d, J = 15.1 Hz, 1H, PhCH—), 6.29 (dt, J = 15.1, 6.2 Hz, 1H, —CHCH₂-), 3.32 (d, J = 6.2 Hz, 2H, —CHCH₂-), 2.20 (s, 3H, COCH₃).

Synthesis of α - β -Enones 10, 11, 29, 31, 39, 40 by Decomplexation of η^4 -Enone-Fe(CO)₂PPh₃ Complexes with CH₃CN. A solution of the η^4 -enone-Fe(CO)₂PPh₃ complex [(η^4 -(E)-[CH₃CH=CHCOCH₂Ph]Fe(CO)₂PPh₃ (0.5 g, 0.94 mmol), η^4 -(E)-[CH₃CH=CHCO(CH₂)₃-CH₃]Fe(CO)₂PPh₃ (0.5 g, 1.0 mmol), 27a (0.5 g, 0.9 mmol), 28 (0.3 g, 0.58 mmol), 30 (0.3 g, 0.67 mmol), or 33 (0.4 g, 0.78 mmol)] in acetonitrile (30 mL) was refluxed or irradiated with a sunlamp until no metal carbonyl peak was detected by IR. The solution was then filtered through silica gel, and solvent was removed to give the crude product as a colorless oil which was purified as above.

(E)·CH₃CH—CHCOCH₂Ph, 10: characterization reported above; yield = 85%.

(E)-CH₂CH—CHCOCH₂CH₂CH₂CH₃, 11: IR ν_{CO} (hexane, cm⁻¹) 1604; ¹H NMR (CDCl₃, δ) 6.76 (dq, J = 15.8, 6.8 Hz, 1H, —CHCO), 6.05 (dq, J = 15.8, 1.8 Hz, 1H, CH₃CH—), 2.44 (t, J = 6.5 Hz, 2H, COCH₂), 1.82 (dd, J = 15.8, 1.8 Hz, 3H, CH₃CH—), 1.50–1.15 (m, 4H, COCH₂CH₂), 0.82 (t, J = 6.3 Hz, 3H, CH₂CH₂CH₃); yield = 80%.

(*E*)-PhCH₂CH—CHCOCH₃, 29: characterization reported above; yield = 71%.

(E)-PhCH₂CH—CHCOCH₂Ph, 31: characterization reported above; yield = 74%.

(*E*)-CH₃CH=C(CH₂CH₃CH₃)COCH₂Ph, 39: IR ν_{CO} (Et₂O, cm⁻¹) 1615; ¹H NMR (C₆D₆, δ), 7.20–7.05 (m, 5H, Ph), 6.42 (q, J = 7.0 Hz, 1H, CH₃CH=), 3.76 (s, 2H, CH₂Ph), 2.38 (t, J = 7.5 Hz, 2H, CH₂-CH₂CH₃), 1.50–1.24 (m, 2H, CH₂CH₂CH₃), 1.42 (d, J = 7.0 Hz, 3H, CH₃CH=), 0.88 (t, J = 7.0 Hz, 3H, CH₂CH₂CH₃); yield = 64%.

(CH₃)₂C—CHCOCH₂Ph, 40: IR ν_{CO} (CHCl₃, cm⁻¹) 1617; ¹H NMR (CDCl₃, δ) 7.38–7.20 (m, 5H, Ph), 6.12 (t, J = 1.5 Hz, 1H, —CHCO), 3.71 (s, 2H, CH₂Ph), 2.18, 1.88 (2d, J = 1.0, 0.8 Hz, 6H, 2CH₃); yield = 74%.

Acknowledgment is made to the National Institute of Health (GM 28938) for financial support of this research.

Supplementary Material Available: Elemental analyses and high-resolution mass spectral data for compounds as listed in the general procedure of the experimental section. Rate plots for (1) the isomerization of *anti*-18 to *syn*-18, (2) the acyl migration from *syn*-18 to 19, and (3) the hydride migration of 19 to 13a,b (7 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.